SECTION

CONTENTS

PRECAUTIONS 3
Precautions for Supplemental Restraint System(SRS) "AIR BAG" and "SEAT BELT PRE-TEN-SIONER"3
Service Notice 3
PREPARATION 4
Special Service Tools 4
Commercial Service Tools 4
SQUEAK AND RATTLE TROUBLE DIAGNOSES. 5
Work Flow 5
CUSTOMER INTERVIEW 5
DUPLICATE THE NOISE AND TEST DRIVE 6
CHECK RELATED SERVICE BULLETINS 6
LOCATE THE NOISE AND IDENTIFY THE ROOT CAUSE 6
REPAIR THE CAUSE 6
CONFIRM THE REPAIR 7
Generic Squeak and Rattle Troubleshooting 7
INSTRUMENT PANEL 7
CENTER CONSOLE 7
DOORS 7
TRUNK 8
SUNROOF/HEADLINING 8
SEATS 8
UNDERHOOD 8
Diagnostic Worksheet 9
AUTOMATIC DRIVE POSITIONER 11
System Description 11
MANUAL OPERATION 11
AUTOMATIC OPERATION 11
MEMORY STORING AND KEYFOB INTER- LOCK STORING 12
MEMORY SWITCH OPERATION 13
ENTRY OPERATION 13
EXITING OPERATION 13
KEYFOB INTERLOCK OPERATION 14
FAIL- SAFE MODE 14
CANCEL OF FAIL-SAFE MODE 14
Component Parts and Harness Connector Location 15
CAN Communication System Description 16
CAN Communication Unit 16
Schematic 17
Wiring Diagram - AUT/DP 19
Terminals and Reference Values for BCM 31
Terminals and Reference Values for Automatic Drive Positioner Control Unit 31
Terminals and Reference Values for Driver Seat Control Unit 33
Work Flow 36
Preliminary Check 36
SETTING CHANGE FUNCTION 36
CHECK POWER SUPPLY AND GROUND 37
CONSULT-II Function (AUTO DRIVE POS.) 39
CONSULT-II START PROCEDURE 39
SELF-DIAGNOSIS RESULTS 39
DATA MONITOR 40
ACTIVE TEST 41
Check CAN Communication System 42
Symptom Chart 42
Check Sliding Motor Circuit 43
Check Reclining Motor Circuit 45
Check Front Lifting Motor Circuit 46
Check Rear Lifting Motor Circuit 47
Check Telescopic Motor Circuit 49
Check Tilt Motor Circuit 50
Check Driver Side Mirror Motor Circuit 51
Check Passenger Side Mirror Motor Circuit 53
Check Sliding Sensor Circuit 55
Check Reclining Sensor Circuit 56
Check Front Lifting Sensor Circuit 57
Check Rear Lifting Sensor Circuit 58
Check Telescopic Sensor Circuit 59
Check Tilt Sensor Circuit 60
Check Driver Side Mirror Sensor Circuit 61
Check Passenger Side Mirror Sensor Circuit 62
Check Steering and Door MirrorSensor PowerSup- ply and Ground Circuit 64
Check Front Door Switch (Driver Side) Circuit 65
Check Sliding Switch Circuit 67
Check Reclining Switch Circuit 68
Check Front Lifting Switch Circuit 70
Check Rear Lifting Switch Circuit 71
Check Power Seat Switch Ground Circuit 72
Check Telescopic Switch Circuit 73
Check Tilt Switch Circuit 75
Check Door Mirror Remote Control Switch (Changeover Switch) Circuit 77
Check Door Mirror Remote Control Switch (Mirror
79
79
Switch) Circuit
Switch) Circuit
81
81
Check Key Switch Circuit (With Intelligent Key) 82
Check Key Switch Circuit (Without Intelligent Key). 84
Check Seat Memory Switch Circuit 85
Check Seat Memory Indicator Lamp Circuit 87
Check UART Communication Line Circuit 88
Check Lumbar Support Circuit 90
POWER SEAT 92
Wiring Diagram - SEAT - 92
HEATED SEAT 94
Description 94
Wiring Diagram - HSEAT - 95
FRONT SEAT 97
Removal and Installation 97
REMOVAL 99
INSTALLATION 101
REMOVAL OF SEATBACK TRIM AND PAD 101
INSTALLATION OF SEATBACK TRIM AND PAD. 102
REMOVAL OF SEAT CUSHION TRIM AND PAD. 102INSTALLATION OF SEAT CUSHION TRIM ANDPAD103
REAR SEAT 104
Removal and Installation 104
REMOVAL 105
INSTALLATION 105
REMOVAL OF SEAT CUSHION TRIM AND PAD. 106INSTALLATION OF SEAT CUSHION TRIM ANDPAD106
REMOVAL OF SEATBACK TRIM AND PAD 106
INSTALLATION OF SEATBACK TRIM AND PAD. 107
REMOVAL OF REMOTE CONTROL LEVER 107
INSTALLATION OF REMOTE CONTROL LEVER 107

PRECAUTIONS

Precautions for Supplemental Restraint System (SRS) "AIR BAG" and "SEAT BELT PRE-TENSIONER"

The Supplemental Restraint System such as "AIR BAG" and "SEAT BELT PRE-TENSIONER", used along with a front seat belt, helps to reduce the risk or severity of injury to the driver and front passenger for certain types of collision. This system includes seat belt switch inputs and dual stage front air bag modules. The SRS system uses the seat belt switches to determine the front air bag deployment, and may only deploy one front air bag, depending on the severity of a collision and whether the front occupants are belted or unbelted.
Information necessary to service the system safely is included in the SRS and SB section of this Service Manual.
WARNING:

- To avoid rendering the SRS inoperative, which could increase the risk of personal injury or death in the event of a collision which would result in air bag inflation, all maintenance must be performed by an authorized NISSAN/INFINITI dealer.
- Improper maintenance, including incorrect removal and installation of the SRS, can lead to personal injury caused by unintentional activation of the system. For removal of Spiral Cable and Air Bag Module, see the SRS section.
- Do not use electrical test equipment on any circuit related to the SRS unless instructed to in this Service Manual. SRS wiring harnesses can be identified by yellow and/or orange harnesses or harness connectors.

Service Notice

- When removing or installing various parts, place a cloth or padding onto the vehicle body to prevent scratches.
- Handle trim, molding, instruments, grille, etc. carefully during removing or installing. Be careful not to oil or damage them.
- Apply sealing compound where necessary when installing parts.
- When applying sealing compound, be careful that the sealing compound does not protrude from parts.
- When replacing any metal parts (for example body outer panel, members, etc.), be sure to take rust prevention measures.

PREPARATION

PREPARATION PFP:00002
 Special Service Tools

The actual shapes of Kent-Moore tools may differ from those of special service tools illustrated here.

Tool number (Kent-Moore No.) Tool name	Description	
(J39570) Chassis ear SIIA0993E	Location the noise	
(J43980) NISSAN Squeak and Rattle Kit	Repairing the cause of the noise	
Commercial Service Tools		
Tool name	Description	
Engine ear	Location the noise	

SQUEAK AND RATTLE TROUBLE DIAGNOSES

Work Flow

SBT842

CUSTOMER INTERVIEW

Interview the customer if possible, to determine the conditions that exist when the noise occurs. Use the Diagnostic Worksheet during the interview to document the facts and conditions when the noise occurs and any customer's comments; refer to SE-9, "Diagnostic Worksheet" . This information is necessary to duplicate the conditions that exist when the noise occurs.

- The customer may not be able to provide a detailed description or the location of the noise. Attempt to obtain all the facts and conditions that exist when the noise occurs (or does not occur).
- If there is more than one noise in the vehicle, be sure to diagnose and repair the noise that the customer is concerned about. This can be accomplished by test driving the vehicle with the customer.
- After identifying the type of noise, isolate the noise in terms of its characteristics. The noise characteristics are provided so the customer, service adviser and technician are all speaking the same language when defining the noise.
- Squeak -(Like tennis shoes on a clean floor) Squeak characteristics include the light contact/fast movement/brought on by road conditions/hard surfaces=higher pitch noise/softer surfaces=lower pitch noises/edge to surface=chirping
- Creak-(Like walking on an old wooden floor)

Creak characteristics include firm contact/slow movement/twisting with a rotational movement/pitch dependent on materials/often brought on by activity.

- Rattle-(Like shaking a baby rattle)

Rattle characteristics include the fast repeated contact/vibration or similar movement/loose parts/missing clip or fastener/incorrect clearance.

- Knock -(Like a knock on a door)

Knock characteristics include hollow sounding/sometimes repeating/often brought on by driver action.

- Tick-(Like a clock second hand)

Tick characteristics include gentle contacting of light materials/loose components/can be caused by driver action or road conditions.

- Thump-(Heavy, muffled knock noise)

Thump characteristics include softer knock/dead sound often brought on by activity.

- Buzz-(Like a bumble bee)

Buzz characteristics include high frequency rattle/firm contact.

- Often the degree of acceptable noise level will vary depending upon the person. A noise that you may judge as acceptable may be very irritating to the customer.
- Weather conditions, especially humidity and temperature, may have a great effect on noise level.

SQUEAK AND RATTLE TROUBLE DIAGNOSES

DUPLICATE THE NOISE AND TEST DRIVE

If possible, drive the vehicle with the customer until the noise is duplicated. Note any additional information on the Diagnostic Worksheet regarding the conditions or location of the noise. This information can be used to duplicate the same conditions when you confirm the repair.
If the noise can be duplicated easily during the test drive, to help identify the source of the noise, try to duplicate the noise with the vehicle stopped by doing one or all of the following:

1) Close a door.
2) Tap or push/pull around the area where the noise appears to be coming from.
3) Rev the engine.
4) Use a floor jack to recreate vehicle "twist".
5) At idle, apply engine load (electrical load, half-clutch on M / T model, drive position on A / T model).
6) Raise the vehicle on a hoist and hit a tire with a rubber hammer.

- Drive the vehicle and attempt to duplicate the conditions the customer states exist when the noise occurs.
- If it is difficult to duplicate the noise, drive the vehicle slowly on an undulating or rough road to stress the vehicle body.

CHECK RELATED SERVICE BULLETINS

After verifying the customer concern or symptom, check ASIST for Technical Service Bulletins (TSBs) related to that concern or symptom.
If a TSB relates to the symptom, follow the procedure to repair the noise.

LOCATE THE NOISE AND IDENTIFY THE ROOT CAUSE

1. Narrow down the noise to a general area. To help pinpoint the source of the noise, use a listening tool (Chassis Ear: J-39570,Engine Ear and mechanics stethoscope).
2. Narrow down the noise to a more specific area and identify the cause of the noise by:

- removing the components in the area that you suspect the noise is coming from.

Do not use too much force when removing clips and fasteners, otherwise clips and fastener can be broken or lost during the repair, resulting in the creation of new noise.

- tapping or pushing/pulling the component that you suspect is causing the noise.

Do not tap or push/pull the component with excessive force, otherwise the noise will be eliminated only temporarily.

- feeling for a vibration with your hand by touching the component(s) that you suspect is (are) causing the noise.
- placing a piece of paper between components that you suspect are causing the noise.
- looking for loose components and contact marks.

Refer to SE-7, "Generic Squeak and Rattle Troubleshooting" .

REPAIR THE CAUSE

- If the cause is a loose component, tighten the component securely.
- If the cause is insufficient clearance between components:
- separate components by repositioning or loosening and retightening the component, if possible.
- insulate components with a suitable insulator such as urethane pads, foam blocks, felt cloth tape or urethane tape. A Nissan Squeak and Rattle Kit (J-43980) is available through your authorized Nissan Parts Department.
CAUTION:
Do not use excessive force as many components are constructed of plastic and may be damaged.

NOTE:

Always check with the Parts Department for the latest parts information.
The following materials are contained in the Nissan Squeak and Rattle Kit (J-43980). Each item can be ordered separately as needed.
URETHANE PADS [1.5 mm (0.059 in) thick]
Insulates connectors, harness, etc.
76268-9E005: $100 \times 135 \mathrm{~mm}(3.94 \times 5.31 \mathrm{in}) / 76884-71$ L01: $60 \times 85 \mathrm{~mm}(2.36 \times 3.35 \mathrm{in}) / 76884-71$ L02:15 \times 25 mm ($0.59 \times 0.98 \mathrm{in}$)
INSULATOR (Foam blocks)
Insulates components from contact. Can be used to fill space behind a panel.
$73982-9 E 000: 45 \mathrm{~mm}(1.77 \mathrm{in})$ thick, $50 \times 50 \mathrm{~mm}(1.97 \times 1.97 \mathrm{in}) / 73982-50 \mathrm{Y} 00: 10 \mathrm{~mm}(0.39 \mathrm{in})$ thick, 50 $\times 50 \mathrm{~mm}(1.97 \times 1.97 \mathrm{in})$

SQUEAK AND RATTLE TROUBLE DIAGNOSES

```
INSULATOR (Light foam block)
80845-71L00: 30 mm (1.18 in) thick, 30 < 50 mm (1.18 < 1.97 in)
FELT CLOTHTAPE
Used to insulate where movement does not occur. Ideal for instrument panel applications.
68370-4B000: 15 < 25 mm (0.59 \times 0.98 in) pad/68239-13E00: 5 mm (0.20 in) wide tape roll The following
materials, not found in the kit, can also be used to repair squeaks and rattles.
UHMW(TEFLON) TAPE
Insulates where slight movement is present. Ideal for instrument panel applications.
SILICONE GREASE
Used in place of UHMW tape that will be visible or not fit.
Note: Will only last a few months.
SILICONE SPRAY
Use when grease cannot be applied.
DUCT TAPE
Use to eliminate movement.
```


CONFIRM THE REPAIR

Confirm that the cause of a noise is repaired by test driving the vehicle. Operate the vehicle under the same conditions as when the noise originally occurred. Refer to the notes on the Diagnostic Worksheet.

Generic Squeak and Rattle Troubleshooting

Refer to Table of Contents for specific component removal and installation information.

INSTRUMENT PANEL

Most incidents are caused by contact and movement between:

1. The cluster lid A and instrument panel
2. Acrylic lens and combination meter housing
3. Instrument panel to front pillar garnish
4. Instrument panel to windshield
5. Instrument panel mounting pins
6. Wiring harnesses behind the combination meter
7. A/C defroster duct and duct joint

These incidents can usually be located by tapping or moving the components to duplicate the noise or by pressing on the components while driving to stop the noise. Most of these incidents can be repaired by applying felt cloth tape or silicon spray (in hard to reach areas). Urethane pads can be used to insulate wiring harness.
CAUTION:
Do not use silicone spray to isolate a squeak or rattle. If you saturate the area with silicone, you will not be able to recheck the repair.

CENTER CONSOLE

Components to pay attention to include:

1. Shifter assembly cover to finisher
2. A/C control unit and cluster lid C
3. Wiring harnesses behind audio and A / C control unit

The instrument panel repair and isolation procedures also apply to the center console.

DOORS

Pay attention to the:

1. Finisher and inner panel making a slapping noise
2. Inside handle escutcheon to door finisher
3. Wiring harnesses tapping
4. Door striker out of alignment causing a popping noise on starts and stops

Tapping or moving the components or pressing on them while driving to duplicate the conditions can isolate many of these incidents. You can usually insulate the areas with felt cloth tape or insulator foam blocks from the Nissan Squeak and Rattle Kit (J-43980) to repair the noise.

TRUNK

Trunk noises are often caused by a loose jack or loose items put into the trunk by the owner. In addition look for:

1. Trunk lid dumpers out of adjustment
2. Trunk lid striker out of adjustment
3. The trunk lid torsion bars knocking together
4. A loose license plate or bracket

Most of these incidents can be repaired by adjusting, securing or insulating the item(s) or component(s) causing the noise.

SUNROOF/HEADLINING

Noises in the sunroof/headlining area can often be traced to one of the following:

1. Sunroof lid, rail, linkage or seals making a rattle or light knocking noise
2. Sun-visor shaft shaking in the holder
3. Front or rear windshield touching headlining and squeaking

Again, pressing on the components to stop the noise while duplicating the conditions can isolate most of these incidents. Repairs usually consist of insulating with felt cloth tape.

SEATS

When isolating seat noise it's important to note the position the seat is in and the load placed on the seat when the noise is present. These conditions should be duplicated when verifying and isolating the cause of the noise.
Cause of seat noise include:

1. Headrest rods and holder
2. A squeak between the seat pad cushion and frame
3. The rear seatback lock and bracket

These noises can be isolated by moving or pressing on the suspected components while duplicating the conditions under which the noise occurs. Most of these incidents can be repaired by repositioning the component or applying urethane tape to the contact area.

UNDERHOOD

Some interior noise may be caused by components under the hood or on the engine wall. The noise is then transmitted into the passenger compartment.
Causes of transmitted under-hood noise include:

1. Any component mounted to the engine wall
2. Components that pass through the engine wall
3. Engine wall mounts and connectors
4. Loose radiator mounting pins
5. Hood bumpers out of adjustment
6. Hood striker out of adjustment

These noises can be difficult to isolate since they cannot be reached from the interior of the vehicle. The best method is to secure, move or insulate one component at a time and test drive the vehicle. Also, engine RPM or load can be changed to isolate the noise. Repairs can usually be made by moving, adjusting, securing, or insulating the component causing the noise.

Diagnostic Worksheet

Dear Infiniti Customer:

We are concerned about your satisfaction with your Infiniti vehicle. Repairing a squeak or rattle sometimes can be very difficult. To help us fix your Infiniti right the first time, please take a moment to note the area of the vehicle where the squeak or rattle occurs and under what conditions. You may be asked to take a test drive with a service consultant or technician to ensure we confirm the noise you are hearing.
I. WHERE DOES THE NOISE COME FROM? (circle the area of the vehicle)

The illustrations are for reference only, and may not reflect the actual configuration of your vehicle.

Continue to page 2 of the worksheet and briefly describe the location of the noise or rattle. In addition, please indicate the conditions which are present when the noise occurs.

SQUEAK \& RATTLE DIAGNOSTIC WORKSHEET - page 2
Briefly describe the location where the noise occurs:
II. WHEN DOES IT OCCUR? (please check the boxes that apply)
\square anytime
\square 1st time in the morning
\square after sitting out in the rain
\square only when it is cold outside
\square when it is raining or wet
\square only when it is hot outside
\square dry or dusty conditions
\square other:

III. WHEN DRIVING:	IV. WHAT TYPE OF NOISE
\square through driveways	\square squeak (like tennis shoes on a clean floor)
\square over rough roads	\square creak (like walking on an old wooden floor)
\square over speed bumps	\square rattle (like shaking a baby rattle)
\square only about ___ mph	\square knock (like a knock at the door)
\square on acceleration	\square tick (like a clock second hand)
\square coming to a stop	\square thump (heavy, muffled knock noise)
\square on turns: left, right or either (circle)	\square buzz (like a bumble bee)
\square with passengers or cargo	
\square other: $\quad \square$ after driving ___ miles or ___ minutes	

TO BE COMPLETED BY DEALERSHIP PERSONNEL

Test Drive Notes:

	YES	NO	Initials of person performing
Vehicle test driven with customer	\square	\square	
- Noise verified on test drive	\square	\square	\square
- Noise source located and repaired	\square	\square	\square
- Follow up test drive performed to confirm repair	\square	\square	\square

VIN: \qquad Customer Name: \qquad
W.O.\# \qquad Date: \qquad
This form must be attached to Work Order

AUTOMATIC DRIVE POSITIONER

AUTOMATIC DRIVE POSITIONER

System Description

- The system automatically moves the driver seat to facilitate entry/exit to/from the vehicle. The automatic drive positioner control unit can also store the optimum driving positions (driver seat, steering wheel position (tilt, telescopic) and door mirror position) for 2 people. If the driver is changes, one-touch operation allows changing to the other driving position.
- The settings (ON/OFF) of the automatic sliding seat (Entry/Exiting operation) at entry/exit can be changed as desired, using the display unit in the center of the instrument panel. The set content is transmitted by CAN communication, from display control unit to driver seat control unit.
- Using CONSULT-II, the seat slide and steering wheel amount at entry/exit setting can be changed.

MANUAL OPERATION

The driving position [seat position, steering wheel position (tilt, telescopic) and door mirror position] can be adjusted with the power seat switch or ADP steering switch or door mirror remote control switch.

NOTE:

- The seat can be manually operated with the ignition switch OFF.
- The door mirrors can be manually operated with the ignition switch turned ACC or ON.

AUTOMATIC OPERATION

Function		Description	
Memory switch operation	The seat, steering and door mirror move to the stored driving position by pushing memory switch (1 or 2).		
Entry/Exiting function	Exiting operation	At exit, the seat moves backward and steering wheel moves forward/upward.	
	Entry operation	At entry, the seat and steering wheel returns from the exiting position to the previous driving position.	
	keyfob interlock operation		Perform memory operation, exiting operation and entry operation by pressing keyfob unlock button.

NOTE:

- Disconnecting the battery erases the stored memory.
- After connecting the battery, insert the key into the ignition cylinder and turn the driver door switch ON (open) \rightarrow OFF (close) $\rightarrow \mathrm{ON}$ (open), the Entry/ Exiting operation becomes possible.
- After exiting operation is carried out, return operation can be operated.

Auto operation temporary stop conditions.	When ignition switch turned to START during memory switch operation and return operation, memory switch operation and entry operation is stopped.
Auto operation stop conditions.	- When the vehicle speed becomes $7 \mathrm{~km} / \mathrm{h}(4 \mathrm{MPH})$ or higher. - When the setting switch, memory switch 1 , or 2 are pressed. - When A / T selector lever is in any position other than P. - When the door mirror remote control switch is operated (when ignition switch turned to ON or ACC). - When power seat switch turned ON. - When ADP steering switch turned ON (telescopic operation or tilt operation). - When door mirror operates (only memory switch operation). - When driver seat sliding Entry/Exiting setting is OFF (only entry/exiting operation). - When steering wheel tilt and telescopic Entry/Exiting setting is OFF (only entry/exiting operation). - When the tilt and telescopic sensor malfunction is detected.

NOTE:

During automatic operation, if the ignition switch is turned ON \rightarrow START, the automatic operation is suspended. When the ignition switch returns to ON, it resumes.

AUTOMATIC DRIVE POSITIONER

MEMORY STORING AND KEYFOB INTERLOCK STORING

- Store the 2 driving positions and shifts to the stored driving position with the memory switch.
- Keyfob interlock function is set simultaneously with setting driving position memory. It can set driving position to memory position.

Adjust the position of driver's seat, steering wheel (tilt, telescopic) and door mirror with manual operations.

Within 5 seconds.

Press memory switch for which driver's seat positions are to be entered in memory for more than $0.5 \mathrm{sec}-$ onds. (2 driver's seat positions can be memorized.)

Indicator LEDs
(1) To modify driver's seat positions, press memory switch. Indicator LED will then go out for 0.5 seconds and then illuminate for 5 seconds.
(2) To enter driver's seat positions in blank memory, indicator LED illuminates for 5 seconds after memory switch is pressed.

NOTE:

- If another keyfob interlock function setting is performed by same key, newly registered setting is valid.
- If new memory string is performed to memory switch that already set keyfob interlock function, keyfob interlock function setting is reset.
- If key does not set previously, keyfob interlock function cannot set.

AUTOMATIC DRIVE POSITIONER

MEMORY SWITCH OPERATION

Selecting the memory

\qquadTurn ignition switch "ON" and press desired memory switch for more than 0.5 seconds. (Indicator LED illuminates.) The driver's seat, door mirror and steering wheel will move to their memorized positions. (During adjustments, indicator LED flashes, then illuminates for 5 seconds after adjustment.)

PIIA6137E

NOTE:

The driver's seat position and steering adjustment functions (see the following table) operate simultaneously in the order of priority.

Priority	Function	Priority	Function
1	Seat sliding, door mirror LH/RH*	4	Seat reclining
2	Steering wheel telescoping	5	Seat lifter-FR
3	Steering wheel tilt	6	Seat lifter-RR

*: In conjunction with sliding the seat, the door mirrors are positioned.

ENTRY OPERATION

When the seat are on the exiting positions, the following operation moves the seat to the previous position before the exiting operation.

EXITING OPERATION

At exit, the seat are automatically moved to the exiting position.
Open driver's door while ignition key
is inserted. (Ignition switch is in "OFF"
position.)

AUTOMATIC DRIVE POSITIONER

KEYFOB INTERLOCK OPERATION

- Perform memory operation, exiting operation and entry operation by pressing keyfob unlock button.

NOTE:

- If steering wheel operation is cancelled, the system performs seat and mirror operation only.
- If Entry/Exiting operation is cancelled, the system performs steering wheel operation and mirror operation only.
- If ignition switch turns ON in the middle of memory operation, the system does not perform exiting operation after memory operation.
- If ignition switch turns ON in the middle of exiting operation, entry operation starts at that time.

FAIL- SAFE MODE

When any manual and automatic operations are not performed, if any motor operations of seats or tilt of steering are detected for approx. 0.1 sec or more, status is judged "Output malfunction". Motor operation will be suspended automatically, and all automatic operations will be ineffective (in this case, the motor will not operate manually).

OPERATED PORTION	Seat sliding
	Seat reclining
	Seat lifting (Front)
	Seat lifting (Rear)
	steering tilt
	steering telescopic

CANCEL OF FAIL-SAFE MODE

- The mode is cancelled when the selector lever is shifted to P position from any other position.

1. a: 10A 38 fuse (With Intelligent Key) b: 50A M fusible link
2. a: Automatic drive positioner control unit M49, M50
b: A/T device (park position switch) M67
(View with the center console removed)
3. a: Power seat switch B175
b: Sliding switch \& Lifting switch
(front \& rear)
c: Reclining switch
d: Lumbar support switch B158
4. ADP steering switch M13
5. Front door switch (Driver side) B26
6. Door mirror remote control switch M18
7. a: Fuse block (J/B) M1, M2 b: BCM M3, M4, B14
(View with the dash side LH removed)
8. Tilt motor and telescopic motor M27 Tilt sensor and telescopic sensor M28 (View with the instrument driver lower panel removed)
9. a: Lumbar support motor B172
b: Reclining motor B166
10. Key switch connector M23 (Without Intelligent Key)
11. Door mirror (Driver side) D2
12. Unified meter and A/C amp. M55
(View with the cluster lid C removed)
13. Fuse block (J/B) fuse layout
14. Seat memory switch D22
15. a: Sliding motor B161
b: Lifting motor (front) B164
c: Lifting motor (rear) B162
d: Driver seat control unit B152, B153
16. Key switch and ignition knob switch connector M22 (With Intelligent Key)
17. Door mirror (Passenger side) D32

CAN Communication System Description

CAN (Controller Area Network) is a serial communication line for real time application. It is an on-vehicle multiplex communication line with high data communication speed and excellent error detection ability. Many electronic control units are equipped onto a vehicle, and each control unit shares information and links with other control units during operation (not independent). In CAN communication, control units are connected with 2 communication lines (CAN H line, CAN L line) allowing a high rate of information transmission with less wiring. Each control unit transmits/receives data but selectively reads required data only.

CAN Communication Unit

Refer to LAN-49, "CAN System Specification Chart" .

Schematic

AUTOMATIC DRIVE POSITIONER

Wiring Diagram — AUT/DP —

AUTOMATIC DRIVE POSITIONER

REFER TO THE FOLLOWING.
E211 -SUPER MULTIPLE JUNCTION (SMJ)
M3), M34 -ELECTRICAL UNITS

AUTOMATIC DRIVE POSITIONER

*: THIS CONNECTOR IS NOT SHOWN IN "HARNESS LAYOUT", PG SECTION.

REFER TO THE FOLLOWING. (D1), (D31 -SUPER MULTIPLE JUNCTION (SMJ)

AUTOMATIC DRIVE POSITIONER

*: THIS CONNECTOR IS NOT SHOWN IN "HARNESS LAYOUT", PG SECTION.

*: THIS CONNECTOR IS NOT SHOWN IN "HARNESS LAYOUT", PG SECTION.

REFER TO THE FOLLOWING.
(B1), D1 -SUPER MULTIPLE JUNCTION (SMJ)

*: THIS CONNECTOR IS NOT SHOWN IN "HARNESS LAYOUT", PG SECTION.

AUTOMATIC DRIVE POSITIONER

Terminals and Reference Values for BCM

Ter- minal	Wire Color	Signal Input/Output	Condition	Voltage (V) (Approx.)	
11	LG	Ignition switch (ACC)	Input	Ignition switch (ACC or ON position)	Battery voltage

Terminals and Reference Values for Automatic Drive Positioner Control Unit

Terminal	Wire Color	Item	Signal Input/Output	Condition	Voltage (V) (Approx.)
1	R	Tilt switch UP signal	Input	Tilt switch turned to upward	0
				Other than above	5
2	G/W	Changeover switch RH signal	Input	When changeover switch in RH position	0
				Other than above	5
3	GY	Mirror switch UP signal	Input	When mirror switch in turned to upward position	0
				Other than above	5
4	Y	Mirror switch LEFT signal	Input	When mirror switch in turned to leftward position	0
				Other than above	5
5	OR	Passenger side mirror sensor (vertical) signal	Input	When passenger side mirror motor is UP or DOWN operation	Changes between 3 (close to perk) - 1 (close to valley)
6	P/L	Driver side mirror sensor (vertical) signal	Input	When driver side mirror motor is UP or DOWN operation	Changes between 3 (close to perk) - 1 (close to valley)
7	Y/R	Tilt sensor signal	Input	Tilt position, top	2
				Tilt position, bottom	4
10	B	UART LINE (TX)	Output	Memory switch 1 or 2 operated	
11	BR	Telescopic switch FORWARD signal	Input	Telescopic switch turned to forward	0
				Other than above	5

AUTOMATIC DRIVE POSITIONER

Terminal	Wire Color	Item	Signal Input/Output	Condition	Voltage (V) (Approx.)
14	L/W	Passenger side mirror motor UP signal	Output	When passenger side mirror motor UP operation	1.5 - Battery voltage
				Other than above	0
15	L/B	Passenger side mirror motor LEFT signal	Output	When passenger side mirror motor LEFT operation	1.5 - Battery voltage
				Other than above	0
16	P	Driver side mirror motor DOWN signal	Output	When driver side mirror motor DOWN operation	1.5 - Battery voltage
				Other than above	0
		Driver side mirror motor RIGTH signal		When driver side mirror motor RIGHT operation	1.5 - Battery voltage
				Other than above	0
17	R/B	Tilt switch DOWN signal	Input	Tilt switch turned to downward	0
				Other than above	5
18	L/OR	Changeover switch LH signal	Input	When changeover switch in LH position	0
				Other than above	5
19	GY/L	Mirror switch DOWN signal	Input	When mirror switch in turned to downward position	0
				Other than above	5
20	PU	Mirror switch RIGHT signal	Input	When mirror switch in turned to rightward position	0
				Other than above	5
21	G/Y	Passenger side mirror sensor (horizontal) signal	Input	When passenger side mirror motor is LEFT or RIGHT operation	Changes between 1 (close to left edge) - 3 (close to right edge)
22	L/Y	Driver side mirror sensor (horizontal) signal	Input	When driver side mirror motor is LEFT or RIGHT operation	Changes between 1 (close to right edge) - 3 (close to left edge)
23	Y/B	Telescopic sensor signal	Input	Telescopic position, top	1
				Telescopic position, bottom	4
26	W	UART LINE (RX)	Input	Memory switch 1 or 2 operated	PIIA4814E
27	LG	Telescopic switch BACKWARD signal	Input	Telescopic switch turned to backward	0
				Other than above	5
28	SB	Ignition switch (START)	Input	Ignition switch (START position)	Battery voltage
30	W/R	Passenger side mirror motor DOWN signal	Output	When passenger side mirror motor downward	1.5 - Battery voltage
				Other than above	0
		Passenger side mirror motor RIGTH signal		When passenger side mirror motor RIGHT operation	1.5 - Battery voltage
				Other than above	0

AUTOMATIC DRIVE POSITIONER

Terminal	Wire Color	Item	Signal Input/Output	Condition	Voltage (V) (Approx.)
31	R/W	Driver side mirror motor UP signal	Output	When driver side mirror motor upward	1.5 - Battery voltage
				Other than above	0
32	G/B	Driver side mirror motor LEFT signal	Output	When driver side mirror motor LEFT operation	1.5 - Battery voltage
				Other than above	0
33	G/W	Sensor power supply	Input	-	5
34	L/R	Battery power supply	Input	-	Battery voltage
35	R/L	Tilt motor UP signal	Output	Tilt switch turned to upward	Battery voltage
				Other than above	0
36	L/R	Telescopic motor FORWARD signal	Output	Telescopic switch turned to forward	Battery voltage
				OFF	0
39	W/R	Battery power supply	Input	-	Battery voltage
40	B	Ground (signal)	-	-	0
41	B/Y	Ground (sensor)	-	-	0
42	R/B	Tilt motor DOWN signal	Output	Tilt switch turned to downward	Battery voltage
				Other than above	0
44	L/W	Telescopic motor BACKWARD signal	Output	Telescopic switch turned to backward	Battery voltage
				Other than above	0
48	B	Ground (power)	-	-	0

Terminals and Reference Values for Driver Seat Control Unit

Terminal	Wire Color	Item	Signal Input/Output	Condition	Voltage (V) (Approx.)
1A	R	Power source (Fusible link)	Input	-	Battery voltage
2	P	UART LINE (TX)	Output	Memory switch 1 or 2 operated	PIIA4814E
3	G	Sliding motor FORWARD signal	Output	When sliding motor FORWARD operation	Battery voltage
				Other than above	0
4	G/L	Reclining motor FORWARD signal	Output	When reclining motor FORWARD operation	Battery voltage
				Other than above	0
5	LG	Front lifting motor DOWN signal	Output	When front lifting motor DOWN operation	Battery voltage
				Other than above	0
6	G/W	Rear lifting motor UP signal	Output	When rear lifting motor UP operation	Battery voltage
				Other than above	0

AUTOMATIC DRIVE POSITIONER

Terminal	Wire Color	Item	Signal Input/Output	Condition	Voltage (V) (Approx.)
7	G/B	Rear lifting motor DOWN signal	Output	When rear lifting motor DOWN operation	Battery voltage
				Other than above	0
8	G/Y	UART LINE (RX)	Input	Memory switch 1 or 2 switch operated	 PIIA4813E
9	BR	Ignition switch (START)	Input	Ignition switch (START position)	Battery voltage
10	G/R	Sliding motor BACKWARD signal	Output	When sliding motor BACKWARD operation	Battery voltage
				Other than above	0
11A	R/W	Power source (Fuse)	Input	-	Battery voltage
12	G/Y	Reclining motor BACKWARD signal	Output	When reclining motor BACKWARD operation	Battery voltage
				Other than above	0
13	Y	Front lifting motor UP signal	Output	When front lifting motor UP operation	Battery voltage
				Other than above	0
14	OR	CAN-H	Input/Output	-	-
15	SB	CAN-L	Input/Output	-	-
16A	B	Ground (power)	-	-	0
17	PU	Park position switch signal	Input	Selector lever other than P position	Battery voltage
				Selector lever is sifted to P position	0
18	G/L	Seat sliding sensor signal	Input	ON (sliding motor operation)	
				Other than above	0 or 5
19	G/R	Front lifting sensor signal	Input	ON (front lifting motor operation)	SIIA0691J
				Other than above	0 or 5
22	R/B	Power seat memory switch 1 signal	Input	Memory switch 1: ON	0
				Memory switch 1: OFF	5
23	Y/W	Power seat memory switch indictor 1 signal	Output	Memory switch 1: ON	1
				Memory switch 1: OFF	Battery voltage

AUTOMATIC DRIVE POSITIONER

Terminal	Wire Color	Item	Signal Input/Output	Condition	Voltage (V) (Approx.)
24	L/R	Seat sliding switch FORWARD signal	Input	When seat sliding switch FORWARD operation	0
				Other than above	Battery voltage
25	L/OR	Seat reclining switch FORWARD signal	Input	When seat reclining switch FORWARD operation	0
				Other than above	Battery voltage
26	L/P	Front lifting switch UP signal	Input	When front lifting switch UP operation	0
				Other than above	Battery voltage
27	L	Rear lifting switch UP signal	Input	When rear lifting switch UP operation	0
				Other than above	Battery voltage
28C	B/W	Ground (sensor)	-	-	0
29	G	Reclining sensor signal	Input	ON (reclining motor operation)	 SIIA0692J
				Other than above	0 or 5
30	R/W	Rear lifting sensor signal	Input	ON (rear lifting motor operation)	 SIIA0693J
				Other than above	0 or 5
34	L/W	Set switch signal	Input	Set witch: ON	0
				Set witch: OFF	5
35	L/B	Power seat memory switch 2 signal	Input	Memory switch 2: ON	0
				Memory switch 2: OFF	5
36	Y/G	Power seat memory switch indictor 2 signal	Output	Memory switch 2: ON	1
				Memory switch 2: OFF	Battery voltage
37	W	Seat sliding switch BACKWARD signal	Input	When seat sliding switch BACKWARD operation	0
				Other than above	Battery voltage
38	LG/B	Seat reclining switch BACKWARD signal	Input	When seat reclining switch BACKWARD operation	0
				Other than above	Battery voltage
39	L/G	Front lifting switch DOWN signal	Input	When front lifting switch DOWN operation	0
				Other than above	Battery voltage
40	L/Y	Rear lifting switch DOWN signal	Input	When rear lifting switch DOWN operation	0
				Other than above	Battery voltage
61E	B/Y	Ground (signal)	-	-	0

AUTOMATIC DRIVE POSITIONER

Work Flow

1. Check the symptom and customer's requests.
2. Understand the system description. Refer to SE-11, "System Description" .
3. Perform the preliminary check, refer to SE-36, "Preliminary Check" .
4. Perform the CAN communication inspection using CONSULT-II, refer to SE-39, "CONSULT-II Function (AUTO DRIVE POS.)".
5. Perform the self-diagnosis. Refer to SE-42, "Check CAN Communication System" .
6. Repair or replace depending on the self-diagnostic results.
7. Based on the trouble diagnosis chart, repair or replace the cause of the malfunction. Refer to SE-42. "Symptom Chart".
8. Does the automatic drive positioner system operate normally?

If it is normal, GO TO 8.
If it is not normal, GO TO 3.
9. INSPECTION END

Preliminary Check
 SETTING CHANGE FUNCTION

The settings of the automatic driving positioner system can be changed, using CONSULT-II and the display unit in the center of the instrument panel.

\times : Applicable -: Not applicable				
Setting item	Content	CONSULT-II (WORK SUPPORT)	Display unit	Factory setting
Change seat sliding volume setting	The distance at retain operation can be selected from the following 3 modes.	40 mm	-	\times
		80 mm		-
		150 mm		-
Change the Entry/Exit seat slide function setting	The seat sliding turnout and return at entry/exit can be selected: ON (operated) - OFF (not operated)	ON	ON: Indicator lamp ON	\times
		OFF	OFF: Indicator lamp OFF	-
Change the Entry/Exit tilt steering wheel function setting	Tilt up and backward steering wheel at entry and exit can be selected: ON (operated) - OFF (not operated)	ON	ON: Indicator lamp ON	\times
		OFF	OFF: Indicator lamp OFF	-
Reset custom settings	All settings to default.	-	Default: Setting button OFF	-

It is possible to set sliding driver seat for entry/exit of vehicle by pressing set switch.

Content	Setting change operation	Indicator LED
The seat sliding turnout and steering wheel up/backward at entry/exit can be operated.	Press the set switch for more than 10 seconds	Blinking twice
The seat sliding turnout and steering wheel up/backward at entry/exit can be not operated.		Blinking ones

NOTE:

After the setting is registered, the new setting is effective, even if the battery is disconnected.

AUTOMATIC DRIVE POSITIONER

CHECK POWER SUPPLY AND GROUND

1. CHECK FUSE

Check if any of the following fuses in the BCM are blown.

- Check 50A fusible link (letter M , located in the fuse and fusible link box.)
- Check 15A fuse [No.22, located in the fuse block (J/B)]
- Check 10A fuse [No.1, located in the fuse block (J/B)]
- Check 10A fuse [No.6, located in the fuse block (J/B)]

NOTE:

Refer to SE-15, "Component Parts and Harness Connector Location" .
OK or NG
OK >> GO TO 2.
NG >> If fuse is blown out, be sure to eliminate cause of malfunction before installing new fuse. Refer to SE-15, "Component Parts and Harness Connector Location" .

2. CHECK POWER SUPPLY CIRCUIT (BCM)

1. Turn ignition switch OFF.
2. Disconnect BCM connector.
3. Check voltage between BCM connector and ground.

Connector	Terminals (Wire color)		Ignition switch	Voltage (V) (Approx.)
	(+)	(-)		
M3	11 (LG)	Ground	ACC	Battery voltage
	38 (W/L)		ON	
M4	42 (L/R)		OFF	
	55 (G)			

OK or NG
OK >> GO TO 3.
NG >> Check harness for open and short between BCM and

SE

3. CHECK GROUND CIRCUIT (BCM)

1. Turn ignition switch OFF.
2. Check continuity between BCM connector M4 terminal 49, 52 and ground.
49 (B) - Ground
: Continuity should exist.
52 (B) - Ground : Continuity should exist.

OK or NG
OK >> BCM circuit is OK. Check the driver seat control unit. GO TO 4.
NG >> Repair or replace the harness between BCM and ground.

AUTOMATIC DRIVE POSITIONER

4. CHECK FUSE

- Check 10A fuse [No.9, located in fuse block (J/B)].

NOTE:

Refer to SE-15, "Component Parts and Harness Connector Location" .
OK or NG
OK >> GO TO 5.
NG >> If fuse is blown out, be sure to eliminate cause of malfunction before installing new fuse. Refer to SE-15, "Component Parts and Harness Connector Location" .

5. CHECK POWER SUPPLY CIRCUIT (DRIVER SEAT CONTROL UNIT)

1. Disconnect driver seat control unit connector.
2. Check voltage between driver seat control unit and ground.

6. check ground circuit (DRIVER SEAT CONTROL UNIT)

1. Turn ignition switch OFF.
2. Check continuity between the driver seat control unit connector B152, B153 terminal16A, 61E and ground.

16A (B) - Ground : Continuity should exist.
61E (B/Y) - Ground : Continuity should exist.
OK or NG
OK >> GOTO 7.
NG >> Repair or replace harness between driver seat control unit and ground.

7. CHECK POWER SUPPLY CIRCUIT (AUTOMATIC DRIVE POSITIONER CONTROL UNIT)

1. Disconnect automatic drive positioner control unit connector.
2. Check voltage between automatic drive positioner control unit and ground.

Connector	Terminals (Wire color)		Ignition switch	Voltage (V) (Approx.)
	$(+)$	$(-)$		
M49	$28(\mathrm{SB})$		START	

OK or NG
OK >> GO TO 8.
NG >> Repair or replace harness between automatic drive positioner control unit and fuse block (J/B).

AUTOMATIC DRIVE POSITIONER

8. CHECK GROUND CIRCUIT (AUTOMATIC DRIVE POSITIONER CONTROL UNIT)

Check continuity between the automatic drive positioner control unit connector M50 terminal 40, 48 and ground.
40 (B) - Ground
48 (B) - Ground
: Continuity should exist.
: Continuity should exist.

OK or NG

OK >> Driver seat control unit circuit is OK.
NG >> Repair or replace harness between automatic drive positioner control unit and ground.

CONSULT-II Function (AUTO DRIVE POS.)

NIS001UZ
CONSULT-II can display each diagnostic item using the diagnostic test modes shown following.

CONSULT-II diagnosis items	Inspection item, self-diagnosis mode		Content	Refer to page
AUTO DRIVE POSITIONER	WORK SUPPORT*1		Changes the setting for each function.	SE-36
	SELF-DIG RESULTS		Check the self-diagnosis results.	SE-39
	DATA MONITOR	Selection from menu	Displays the input data to driver seat control unit and automatic driving positioned control unit on real-time basis.	SE-40
	CAN DIAGNOSTIC SUPPORT MONITOR		The results of transmit / receive diagnosis of CAN communication can be read	LAN-47
	ACTIVE TEST*2		Gives a drive signal to a load to check the operation.	SE-41
	DRIVER SEAT CONTROL UNIT PART NUMBER		Displays driver seat control unit part No.	-
BCM	DATA MONITOR	Selection from menu	Displays the input data to BCM on real-time basis	BL-37

*1: For setting automatic drive positioner functions only.
*2: During vehicle driving, do not perform active test.

CONSULT-II START PROCEDURE

Refer to GI-38, "CONSULT-II Start Procedure" .
SELF-DIAGNOSIS RESULTS
Display Item List

| DTC | Self-diagnosis item
 (CONSULT-II indication) | DTC detection condition | Reference
 page |
| :---: | :---: | :--- | :--- | :---: |
| U1000 | CAN COMM CIRCUIT | When driver seat control unit is not transmitting or receiving CAN communication
 signal for 2 seconds or more. | SE-42 |
| B2112 | SEAT SLIDE | When any manual and automatic operations are not performed, if any motor
 operations of seat slide is detected for 0.1 second or more, status is judged
 "Output error". | $\underline{\underline{\text { SE-43 }}}$ |
| B2113 | SEAT RECLINING | When any manual and automatic operations are not performed, if any motor
 operations of seat reclining is detected for 0.1 second or more, status is judged
 "Output error". | $\underline{\underline{\text { SE-45 }}}$ |
| B2114 | SEAT LIFTER FR | When any manual and automatic operations are not performed, if any motor
 operations of seat lifting FR is detected for 0.1 second or more, status is judged
 "Output error". | $\underline{\underline{\text { SE-46 }}}$ |
| B2115 | SEAT LIFTER RR | When any manual and automatic operations are not performed, if any motor
 operations of seat lifting RR is detected for 0.1 second or more, status is judged
 "Output error". | $\underline{\underline{\text { SE-47 }}}$ |

DTC	Self-diagnosis item (CONSULT-II indication)	DTC detection condition	Reference page
B2116	TILT OUTPUT	When any manual and automatic operations are not performed, if any motor operations of steering tilt is detected for 0.1 second or more, status is judged "Output error".	SE-50 SE-60
B2118	TILT SENSOR	When tilt sensor detects 0.1 V or lower, or 4.9 V or higher, for 0.5 seconds or more.	$\underline{\text { SE-60 }}$
B2119	TELESCO SENSOR	When telescopic sensor detects 0.1 V or lower, or 4.9V or higher, for 0.5 seconds or more.	$\underline{\text { SE-59 }}$
B2125	P RANGE SW	With the A/T selector lever in P position, if the vehicle speed of $7 \mathrm{~km} / \mathrm{h} \mathrm{(4} \mathrm{MPH)} \mathrm{or}$ higher was input the park position switch input system is judged malfunctioning.	$\underline{\text { SE-81 }}$
B2128	UART COMM	Malfunction is detected in UART communication.	SE-88

NOTE:

- The displays of CAN communication and P range switch display error detecting condition from memory erase to the present on "TIME".
- If error is detected in the past and present error is detected, "CRNT" is displayed.
- If error is detected in the past and present error is not detected, "PAST" is displayed.
- If error has never been detected, nothing is displayed on "TIME".
- Any items other than CAN communication and P range switch count error detection frequency occurred after erase history to " $1-127$ ".
- If error was detected in the past, error detection frequency from memory erase to the present is displayed on "TIME".
- If error has never been detected, nothing is displayed on "TIME".
- Can clear the detected memory.

Normal: Clear memory in normal condition, history is erased and nothing is displayed on "TIME". Error: Clear memory in error condition, error is detected again and " 1 " is displayed on "TIME".

DATA MONITOR

Selection from Menu

Monitor item [OPERATION or UNIT]		
SLIDE SW-FR	"ON/OFF"	ON/OFF status judged from the sliding switch (FR) signal is displayed.
SLIDE SW-RR	"ON/OFF"	ON/OFF status judged from the sliding switch (RR) signal is displayed.
RECLN SW-FR	"ON/OFF"	ON/OFF status judged from the reclining switch (FR) signal is displayed.
RECLN SW-RR	"ON/OFF"	ON/OFF status judged from the reclining switch (RR) signal is displayed.
LIFT FR SW-UP	ON/OFF status judged from the FR lifter switch (UP) signal is displayed.	
LIFT FR SW-DN	"ON/OFF"	ON/OFF status judged from the FR lifter switch (DOWN) signal is displayed.
LIFT RR SW-UP	"ON/OFF"	ON/OFF status judged from the RR lifter switch (UP) signal is displayed.
LIFT RR SW-DN	"ON/OFF"	ON/OFF status judged from the RR lifter switch (DOWN) signal is displayed.
MIR CON SW-UP	ON/OFF status judged from the door mirror remote control switch (UP) signal is displayed.	
MIR CON SW-DN	ON/OFF status judged from the door mirror remote control switch (DOWN) signal is displayed.	
MIR/OFF status judged from the door mirror remote control switch (RIGHT) signal		
is displayed.		

AUTOMATIC DRIVE POSITIONER

Monitor item [OPERATION or UNIT]		Contents
TILT SW-UP	"ON/OFF"	ON/OFF status judged from the tilt switch (UP) signal is displayed.
TILT SW-DOWN	"ON/OFF"	ON/OFF status judged from the tilt switch (DOWN) signal is displayed.
SET SW	"ON/OFF"	ON/OFF status judged from the setting switch signal is displayed.
MEMORY SW1	"ON/OFF"	ON/OFF status judged from the seat memory switch 1 signal is displayed.
MEMORY SW2	"ON/OFF"	ON/OFF status judged from the seat memory switch 2 signal is displayed.
P POSI SW	"ON/OFF"	The selector lever position "ON (P position) / OFF (other than P position)" judged from the park position switch signal is displayed.
STARTER SW	"ON/OFF"	Ignition key switch ON (START, ON) /OFF (ignition switch IGN, ACC, or OFF) status judged from the ignition switch signal is displayed.
SLIDE PULSE	-	Value (32768) when battery connects is as standard. If it moves backward, the value increases. If it moves forward, the value decreases.
RECLN RULSE	-	Value (32768) when battery connects is as standard. If it moves backward, the value increases. If it moves forward, the value decreases.
LIFT FR PULSE	-	Value (32768) when battery connects is as standard. If it moves DOWN, the value increases. If it moves UP, the value decreases.
LIFT RR PULSE	-	Value (32768) when battery connects is as standard. If it moves DOWN, the value increases. If it moves UP, the value decreases.
TILT SEN	"V"	The tilt position (voltage) judged from the tilt sensor signal is displayed.
TELESCO SEN	"V"	The telescoping position (voltage) judged from the telescoping sensor signal is displayed.
MIR/SE RH R-L	"V"	Voltage output from RH door mirror sensor (LH/RH) is displayed.
MIR/SE RH U-D	"V"	Voltage output from RH door mirror sensor (UP/DOWN) is displayed.
MIR/SE LH R-L	"V"	Voltage output from LH door mirror sensor (LH/RH) is displayed.
MIR/SE LH U-D	"V"	Voltage output from LH door mirror sensor (UP/DOWN) is displayed.

ACTIVE TEST

CAUTION:

During vehicle driving, do not perform active test.

NOTE:

If active test is performed, reset seat memory and key fob interlock drive positioner after performing work.
Display Item List

Test item	Description
TILT MOTOR	The tilt motor is activated by receiving the drive signal.
TELESCO MOTOR	The telescopic motor is activated by receiving the drive signal.
SEAT SLIDE	The sliding motor is activated by receiving the drive signal.
SEAT RECLINING	The reclining motor is activated by receiving the drive signal.
SEAT LIFTER FR	The front end lifter motor is activated by receiving the drive signal.
SEAT LIFTER RR	The rear end lifter motor is activated by receiving the drive signal.
MEMORY SW INDCTR	The memory switch indicator is lit by receiving the drive signal.
MIRROR MOTOR RH	The RH mirror motor moves the mirror UP/DOWN and LEFT/RIGHT by receiving the drive signal.
MIRROR MOTOR LH	The LH mirror motor moves the mirror UP/DOWN and LEFT/RIGHT by receiving the drive signal.

Check CAN Communication System

1. CHECK SELF-DIAGNOSTIC RESULT

CAUTION:

If CONSULT-II is used with no connection of CONSULT-II CONVERTER, malfunctions might be detected in self-diagnosis depending on control unit which carry out CAN communication.

1. Connect CONSULT-II, and turn ignition switch ON.
2. Touch "AUTO DRIVE POS." on "SELECT SYSTEM" screen.
3. Touch "SELF-DIAG RESULTS" on "SELECT DIAG MODE" screen.
4. Check display content in self-diagnostic results.

Displayed U1000?
Yes >> GO TO LAN-49, "CAN System Specification Chart".
No >> Inspection END.
Symptom Chart
NIS001V1

Symptom	Diagnoses / service procedure	Refer to page
Only setting change function cannot be set with display.	Interacted display system (without NAVI)	AV-54
	Navigation system (with NAVI)	AV-93
A part of seat system does not operate (both automatically and manually).	1. Check sliding motor circuit	SE-43
	2. Check reclining motor circuit	SE-45
	3. Check front lifter motor circuit	SE-46
	4. Check rear lifter motor circuit	SE-47
	5. If the above systems are normal, replace the driver seat control unit	SE-15
A part of steering tilt, telescopic and door mirror does not operate (both automatically and manually).	1. Check tilt motor circuit	SE-50
	2. Check telescopic motor circuit	SE-49
	3. Check driver side mirror motor circuit	SE-51
	4. Check passenger side mirror motor circuit	SE-53
	5. If the above systems are normal, replace the automatic drive positioner control unit	SE-15
A part of seat system does not operate (only automatic operation).	1. Check sliding sensor circuit	SE-55
	2. Check reclining sensor circuit	SE-56
	3. Check front lifting sensor circuit	SE-57
	4. Check rear lifting sensor circuit	SE-58
	5. If the above systems are normal, replace the driver seat control unit	SE-15
A part of steering tilt, telescopic system and door mirror system dose not operate (only automatic operation).	1. Check steering and door mirror sensor power supply and ground circuit	SE-64
	2. Check driver side mirror sensor circuit	SE-61
	3. Check passenger side mirror sensor circuit	SE-62
	4. Check tilt sensor circuit	SE-60
	5. Check telescopic sensor circuit	SE-59
	6. If all the above systems are normal, replace the automatic drive positioner control unit	SE-15

AUTOMATIC DRIVE POSITIONER

Symptom	Diagnoses / service procedure	Refer to page
All the automatic operations do not operate.	1. Check A / T device (park position switch) circuit	SE-81
	2. Check key switch circuit (with intelligent key)	SE-82
	3. Check key switch circuit (without intelligent key)	SE-84
	4. Check UART communication line circuit	SE-88
	5. If all the above systems are normal, replace the automatic drive positioner control unit	SE-15
A part of seat system does not operate (only manual operation).	1. Check sliding switch circuit	SE-67
	2. Check reclining switch circuit	SE-68
	3. Check front lifting switch circuit	SE-70
	4. Check rear lifting switch circuit	SE-71
	5. If the above systems are normal, replace the driver seat control unit	SE-15
A part of steering tilt, telescopic and door mirror does not operate (only manual operation).	1. Check door mirror remote control switch (changeover switch) circuit	SE-77
	2. Check door mirror remote control switch (mirror switch) circuit	SE-79
	3. Check tilt switch circuit	SE-75
	4. Check telescopic switch circuit	SE-73
	5. If the above systems are normal, replace the automatic drive positioner control unit	SE-15
Only seat memory switch operation dose not operate.	1. Check seat memory switch circuit	SE-85
	2. If the above systems are normal, replace the driver seat control unit	SE-15
Seat memory indicator lamps 1 and 2 do not illuminate.	1. Check seat memory indicator lamp circuit	SE-87
	2. If all the above systems are normal, replace the driver seat control unit	SE-15
The Entry/Exiting does not operated when door is opened and closed. (The Entry/Exiting operates with key switch)	1. Check front door switch (driver side) circuit	SE-65
	2. If all the above systems are normal, replace the BCM	BCS-14
Only seat sliding, seat reclining and seat lifting (front and rear) operations do not operate.	Check power seat switch ground circuit	SE-72
Only lumbar support does not operate.	Check lumbar support circuit	SE-90
Check Sliding Motor Circuit 1. CHECK SEAT SLIDING MECHANISM		NISOO

Check the following.

- Operation malfunction caused by sliding rail deformation or pinched harness or other foreign materials
- Operation malfunction caused by foreign materials adhered to the sliding motor or sliding rail connector rod
- Operation malfunction and interference with other parts by poor installation

OK or NG
OK >> • GO TO 2 (With CONSULT-II).

- GO TO 3 (Without CONSULT-II).

NG >> Repair the malfunctioning part and check again.

AUTOMATIC DRIVE POSITIONER

2. CHECK FUNCTION

With CONSULT-II

Check operation with "SEAT SLIDE" in ACTIVE TEST.

Test item	Description
SEAT SLIDE	The sliding motor is activated by receiving the drive signal.
OK or NG	
OK $\quad \gg$ Sliding motor circuit is OK.	
NG \gg GO TO 3.	

3. CHECK SLIDING MOTOR HARNESS CONTINUITY

1. Turn ignition switch OFF.
2. Disconnect driver seat control unit connector and sliding motor connector.
3. Check continuity between driver seat control unit connector B153 terminals 3, 10 and sliding motor connector B161 terminals 3, 10 .

$3(G)-3(G)$: Continuity should exist.
$10(G / R)-10(G / R)$: Continuity should exist.

4. Check continuity between driver seat control unit connector B153 terminals 3, 10 and ground.
$\begin{array}{ll}3(G)-G r o u n d & \text { : Continuity should not exist. } \\ 10(G / R)-\text { Ground } & \text { : Continuity should not exist. }\end{array}$

OK or NG
OK >> GO TO 4.
NG >> Repair or replace harness between driver seat control unit and sliding motor.

4. CHECK DRIVER SEAT CONTROL UNIT OUTPUT SIGNAL

1. Connect the driver seat control unit connector.
2. Sliding switch operate, check voltage between driver seat control unit connector and ground.

AUTOMATIC DRIVE POSITIONER

Check Reclining Motor Circuit

1. check seat reclining mechanism

Check the following.

- Operation malfunction caused by an interference with the center pillar or center console
- Operation malfunction and interference with other parts by poor installation

OK or NG
OK >> • GO TO 2 (With CONSULT-II).

- GO TO 3 (Without CONSULT-II).

NG >> Repair the malfunctioning part and check again.

2. CHECK FUNCTION

(1) With CONSULT-II

Check operation with "SEAT RECLINING" in ACTIVE TEST.

3. Check reclining motor harness continuity

1. Turn ignition switch OFF.
2. Disconnect driver seat control unit connector and reclining motor connector.
3. Check continuity between driver seat control unit connector B153 terminals 4, 12 and reclining motor connector B166 terminals 4, 12.

$4(G / L)-4(G / L)$: Continuity should exist.
$12(G / Y)-12(G / Y)$: Continuity should exist.

4. Check continuity between driver seat control unit connector B153 terminals 4, 12 and ground.

4 (G/L) - Ground
: Continuity should not exist.
12 (G/Y) - Ground
: Continuity should not exist.

OK or NG
OK >> GO TO 4.
NG >> Repair or replace harness between driver seat control unit and reclining motor.

AUTOMATIC DRIVE POSITIONER

4. CHECK DRIVER SEAT CONTROL UNIT OUTPUT SIGNAL

1. Connect the driver seat control unit.
2. Reclining switch operate, check voltage between driver seat control unit connector and ground.

OK >> Replace reclining motor.
NG >> Replace driver seat control unit.

Check Front Lifting Motor Circuit

1. CHECK FRONT LIFTING MECHANISM

Check the following.

- Operation malfunction caused by lifter mechanism deformation or pinched harness or other foreign materials
- Operation malfunction caused by foreign materials adhered to the lifter motor or lead screws
- Operation malfunction and interference with other parts by installation

OK or NG

OK >> • GO TO 2 (With CONSULT-II).

- GO TO 3 (Without CONSULT-II).

NG >> Repair the malfunctioning part and check again.

2. CHECK FUNCTION

(1) With CONSULT-II

Check operation with "SEAT LIFTER FR" in ACTIVE TEST.

Test item	Description
SEAT LIFTER FR	The front end lifter motor is activated by receiving the drive sig- nal.
OK or NG	
OK \gg Front lifting motor circuit is OK.	
NG \gg GO TO 3.	

AUTOMATIC DRIVE POSITIONER

3. check front lifting motor harness continuity

1. Turn ignition switch OFF.
2. Disconnect driver seat control unit connector and front lifting motor connector.
3. Check continuity between driver seat control unit connector B153 and terminals 5, 13 and front lifting motor connector B164 terminals 5, 13.

$$
\begin{array}{ll}
5(L G)-5(L G) & \text { : Continuity should exist. } \\
13(Y)-13(Y) & \text { : Continuity should exist. }
\end{array}
$$

4. Check continuity between driver seat control unit connector B153 and terminals 5, 13 and ground.
5 (LG) - Ground
: Continuity should not exist.
13 (Y) - Ground
: Continuity should not exist.

OK or NG
OK >> GO TO 4.
NG >> Repair or replace harness between driver seat control unit and front lifting motor.

4. CHECK DRIVER SEAT CONTROL UNIT OUTPUT SIGNAL

1. Connect the driver seat control unit connector.
2. Front lifting switch operate, check voltage between driver seat control unit connector and ground.

Connector	Terminals (Wire color)		Front lifting switch condition	Voltage (V) (Approx.)
	(+)	(-)		
B153	5 (LG)	Ground	DOWN	Battery voltage
			Other than above	0
	13 (Y)		UP	Battery voltage
			Other than above	0

OK or NG

OK >> Replace front lifting motor.

NG >> Replace driver seat control unit.

Check Rear Lifting Motor Circuit

1. CHECK REAR LIFTING MECHANISM

Check the following.

- Operation malfunction caused by lifter mechanism deformation or pinched harness or other foreign materials
- Operation malfunction caused by foreign materials adhered to the lifter motor or lead screws
- Operation malfunction and interference with other parts by poor installation

OK or NG

OK >> • GO TO 2 (With CONSULT-II).

- GO TO 3 (Without CONSULT-II).

NG >> Repair the malfunctioning part and check again.

AUTOMATIC DRIVE POSITIONER

2. CHECK FUNCTION

With CONSULT-II

Check operation with "SEAT LIFTER RR" in ACTIVE TEST.

Test item	Description
SEAT LIFTER	The rear end lifter motor is activated by receiving the drive sig- RR

OK or NG
OK >> Rear lifting motor check is OK.
NG >> GO TO 3.

3. check rear lifting harness continuity

1. Turn ignition switch OFF.
2. Disconnect driver seat control unit connector and rear lifting motor connector.
3. Check continuity between driver seat control unit connector B153 terminals 6, 7 and rear lifting motor connector B162 terminals 6,7 .

$6(G / W)-6(G / W)$: Continuity should exist.
$7(G / B)-7(G / B)$: Continuity should exist.

4. Check continuity between driver seat control unit connector B153 terminals 6, 7 and ground.

6 (G/W) - Ground : Continuity should not exist.
7 (G/B) - Ground : Continuity should not exist.

OK or NG
OK >> GO TO 4.
NG >> Repair or replace harness between driver seat control unit and rear lifting motor.

4. CHECK DRIVER SEAT CONTROL UNIT OUTPUT SIGNAL

1. Connect the driver seat control unit connector.
2. Rear lifting switch operate, check voltage between driver seat control unit connector and ground.

Connector	Terminals (Wire color)		Rear lifting switch condition	Voltage (V) (Approx.)
	(+)	(-)		
B153		Ground	UP	Battery voltage
	6 (G/W)		Other than above	0
	7 (G/B)		DOWN	Battery voltage
			Other than above	0

OK or NG

OK >> Replace rear lifting motor.
NG >> Replace driver seat control unit.

AUTOMATIC DRIVE POSITIONER

Check Telescopic Motor Circuit

1. CHECK STEERING WHEEL TELESCOPIC MECHANISM

Check following.

- Operation malfunction caused by steering wheel telescopic mechanism deformation or pinched harness or other foreign materials
- Operation malfunction and interference with other parts by poor installation

OK or NG
OK >> • GO TO 2 (With CONSULT-II).

- GO TO 3 (Without CONSULT-II).

NG >> Repair the malfunctioning part and check again.

2. CHECK FUNCTION

(1) With CONSULT-II

Check operation with "TELESCO MOTOR" in ACTIVE TEST.

Test item	Description
TELESCO	The telescopic motor is activated by receiving the drive signal.
MOTOR	
OK or NG	
OK >> Steering telescopic motor circuit is OK.	
NG >> GO TO 3.	

ACTIVE TEST			
\qquadTELESCO MOTOR OFF FR RR MODE BACK LIGHT COPY			

3. CHECK TELESCOPIC MOTOR HARNESS CONTINUITY

1. Turn ignition switch OFF.
2. Disconnect automatic drive positioner control unit and tilt motor and telescopic motor connector.
3. Check continuity between automatic drive positioner control unit connector M50 terminals 36, 44 and tilt motor and telescopic motor connector M27 terminals 3, 4.

$36(L / R)-3(L / R)$	$:$ Continuity should exist.
$44(L / W)-4(L / W)$: Continuity should exist.

4. Check continuity between automatic drive positioner control unit connector M50 terminals 36, 44 and ground.
$\begin{array}{ll}36(\text { L/R }) \text { - Ground } & \text { :Continuity should not exist. } \\ 44 \text { (L/W) - Ground } & \text { :Continuity should not exist. }\end{array}$

OK or NG
OK >> GO TO 4.
NG >> Repair or replace harness between automatic drive positioner control unit and tilt motor and telescopic motor.

AUTOMATIC DRIVE POSITIONER

4. CHECK BCM OUTPUT SIGNAL

1. Connect the automatic drive positioner control unit connector.
2. Telescopic switch operate, check voltage between automatic drive positioner control unit connector and ground.

Connector	Terminals (Wire color)		Telescopic switch condition	Voltage (V) (Approx.)
	(+)	(-)		
M50		Ground	FORWARD	Battery voltage
			Other than above	0
	44 (L/W)		BACKWARD	Battery voltage
			Other than above	0

OK or NG

OK >> Replace tilt and telescopic motor.

NG >> Replace automatic drive positioner control unit.

Check Tilt Motor Circuit

1. CHECK STEERING WHEEL TILT MECHANISM

Check following.

- Operation malfunction caused by steering wheel tilt mechanism deformation or pinched harness and other foreign materials
- Operation malfunction and interference with other parts by poor installation

OK or NG
OK >> • GO TO 2 (With CONSULT-II).

- GO TO 3 (Without CONSULT-II).

NG >> Repair the malfunctioning part.

2. CHECK FUNCTION

With CONSULT-II

Check operation with "TILT MOTOR" in ACTIVE TEST.

AUTOMATIC DRIVE POSITIONER

3. CHECK TILT MOTOR CIRCUIT HARNESS CONTINUITY

1. Turn ignition switch OFF.
2. Disconnect automatic drive positioner control unit connector and tilt and telescopic motor connector.
3. Check continuity between automatic drive positioner control unit connector M50 terminals 35, 42 and tilt and telescopic motor connector M27 terminals 1, 2.

$35(R / L)-1(R / L)$: Continuity should exist.
$42(R / B)-2(R / B)$: Continuity should exist.

4. Check continuity between automatic drive positioner control unit connector M50 terminals 35, 42 and ground.

$$
\begin{array}{ll}
35(R / L)-\text { Ground } & \text { : Continuity should not exist. } \\
42(R / B)-\text { Ground } & \text { : Continuity should not exist. }
\end{array}
$$

OK or NG
OK >> GO TO 4.
NG >> Repair or replace harness between automatic drive positioner control unit and tilt and telescopic motor.

4. CHECK BCM OUTPUT SIGNAL

1. Connect automatic drive positioner control unit connector and tilt and telescopic motor connector.
2. Tilt switch operate, check voltage between automatic drive positioner control unit connector and ground.

Connector	Terminals (Wire color)		Tilt switch condition	Voltage (V) (Approx.)
	(+)	(-)		
M50	35 (R/L)	Ground	UP	Battery voltage
	(R/L)		Other than above	0
	42 (R/B)		DOWN	Battery voltage
			Other than above	0

OK or NG

OK >> Replace tilt and telescopic motor.
NG >> Replace automatic drive positioner control unit.

Check Driver Side Mirror Motor Circuit

1. CHECK DOOR MIRROR FUNCTION

Check the following.
Operation malfunction caused by a foreign object caught in door mirror face edge.
OK or NG
OK >> • GO TO 2 (With CONSULT-II).

- GO TO 3 (Without CONSULT-II).

NG >> Repair the malfunctioning parts, and check the symptom again.

AUTOMATIC DRIVE POSITIONER

2. CHECK MIRROR MOTOR

With CONSULT-II

Check the operation with "MIRROR MOTOR LH" in the ACTIVE TEST.

3. CHECK DOOR MIRROR MOTOR (DRIVER SIDE) HARNESS CONTINUITY

1. Turn ignition switch OFF.
2. Disconnect automatic drive positioner control unit connector and door mirror (driver side) connector.
3. Check continuity between automatic drive positioner control unit connector M49 terminal 16, 31, 32 and door mirror (driver side) connector D2 terminal 11, 12, 13.

$16(P)-13(P)$: Continuity should exist.
$31(R / W)-11(G Y)$: Continuity should exist.
$32(G / B)-12(P U)$: Continuity should exist.

4. Check continuity between automatic drive positioner control unit connector M49 terminal 16, 31, 32 and ground.

16 (P) - Ground : Continuity should not exist.

31 (R/W) - Ground : Continuity should not exist.
32 (G/B) - Ground : Continuity should not exist.
OK or NG
OK >> GO TO 4.
NG >> Repair or replace harness between automatic drive positioner control unit and door mirror (driver side).

AUTOMATIC DRIVE POSITIONER

4. CHECK MIRROR MOTOR SIGNAL

1. Connect automatic drive positioner control unit and door mirror (driver side) connector.
2. Turn ignition switch ACC.
3. Turn changeover switch LH position.
4. Mirror switch operate, check voltage between door mirror (driver side) connector and ground.

Connector	Terminals (Wire color)		Mirror switch condition	Voltage (V) (Approx.)	H.S. (acc
	(+)	(-)			Door mirror connector
D2	11 (GY)	Ground	UP	Battery voltage	\square
			Other than above	0	
	12 (PU)		LEFT	Battery voltage	PIIB8582E
			Other than above	0	
	13 (P)		DOWN or RIGHT	Battery voltage	
			Other than above	0	PIIB8582E

OK or NG

OK >> Replace door mirror motor (driver side).
NG >> Check the condition of the harness and the connector.

Check Passenger Side Mirror Motor Circuit

1. CHECK DOOR MIRROR FUNCTION

Check the following.
Operation malfunction caused by a foreign object caught in door mirror face edge.
OK or NG
OK >> • GO TO 2 (With CONSULT-II).

- GO TO 3 (Wlthout CONSULT-II).

NG >> Repair the malfunctioning parts, and check the symptom again.

2. CHECK MIRROR MOTOR

(1) With CONSULT-II

Check the operation with "MIRROR MOTOR RH" in the ACTIVE TEST.

AUTOMATIC DRIVE POSITIONER

3. CHECK DOOR MIRROR MOTOR (PASSENGER SIDE) HARNESS CONTINUITY

1. Turn ignition switch OFF.
2. Disconnect automatic drive positioner control unit connector and door mirror (passenger side) connector.
3. Check continuity between automatic drive positioner control unit connector M49 terminal 14, 15, 30 and door mirror (passenger side) connector D32 terminal 11, 12, 13.

$14($ L/W) - 11 (PU)	: Continuity should exist.
$15($ L/B) -12 (OR)	: Continuity should exist.
$30($ W/R) - 13 (GY)	: Continuity should exist.

4. Check continuity between automatic drive positioner control unit connector M49 terminal 14, 15, 30 and ground.

$14($ L/W $)-$ Ground	: Continuity should not exist.
$15($ L/B) - Ground	: Continuity should not exist.
$30($ W/R) - Ground	: Continuity should not exist.

15 (L/B) - Ground : Continuity should not exist.
30 (W/R) - Ground : Continuity should not exist.
OK or NG
OK >> GO TO 4.
NG >> Repair or replace harness between automatic drive positioner control unit and door mirror (passenger side).

4. CHECK MIRROR MOTOR SIGNAL

1. Connect automatic drive positioner control unit and door mirror (passenger side) connector.
2. Turn ignition switch ACC.
3. Turn changeover switch RH position.
4. Mirror switch operate, check voltage between door mirror (passenger side) connector and ground.

Connector	Terminals (Wire color)		Mirror switch condition	Voltage (V) (Approx.)	
	(+)	$(-)$			
D32	11 (PU)	Ground	UP	Battery voltage	
			Other than above	0	
	12 (OR)		LEFT	Battery voltage	$\underbrace{11,12,13}$
			Other than above	0	7
	13 (G/Y)		DOWN or RIGHT	Battery voltage	
			Other than above	0	PIIB8582E

OK or NG
OK >> Replace door mirror motor (passenger side).
NG >> Check the condition of the harness and connector.

AUTOMATIC DRIVE POSITIONER

Check Sliding Sensor Circuit

1. CHECK FUNCTION

(1) With CONSULT-II

Check operation with "SLIDE PULSE" on the DATA MONITOR to make sure the pulse changes.

| Monitor item
 [OPERATION or
 UNIT] | Contents |
| :---: | :---: | :---: | :---: | :---: | :---: |
| SLIDE PULSE | The seat sliding position (pulse) judged from the sliding sensor
 signal is displayed. |

Without CONSULT-II

1. Turn ignition switch OFF.
2. Check signal between driver seat control unit connector and ground, with oscilloscope.

Connector	Terminals (Wire color)		Condition	Signal (Reference value)
	(+)	(-)		
B152	18 (G/L)	Ground	Sliding motor operation	 PIIA3277E

OK or NG
OK >> Sliding sensor circuit is OK.
NG >> GO TO 2.

2. CHECK SLIDING SENSOR HARNESS CONTINUITY

1. Disconnect driver seat control unit connector and sliding motor connector.
2. Check continuity between driver seat control unit connector B152 terminals 18, 28C and sliding motor connector B161 terminals 18, 28.

OK or NG
OK >> Replace sliding motor.
NG >> Repair or replace harness between driver seat control unit and sliding motor.

AUTOMATIC DRIVE POSITIONER

Check Reclining Sensor Circuit

1. CHECK FUNCTION

(D) With CONSULT-II

Check operation with "RECLINING PULSE" on the DATA MONITOR to make sure the pulse changes.

Without CONSULT-II

1. Turn ignition switch OFF.
2. Check signal between driver seat control unit connector and ground, with oscilloscope.

OK or NG
OK >> Reclining sensor circuit is OK.
NG >> GO TO 2.

2. CHECK RECLINING SENSOR HARNESS CONTINUITY

1. Disconnect driver seat control unit connector and reclining motor connector.
2. Check continuity between driver seat control unit connector B152 terminals 28C, 29 and reclining motor connector B166 terminals 28, 29.

$28 C(B / W)-28(B / W)$: Continuity should exist.
$29(G)-29(G)$: Continuity should exist.

3. Check continuity between driver seat control unit connector B152 terminals 28C, 29 and ground.

28C (B/W) - Ground
29 (G) - Ground
: Continuity should not exist.
: Continuity should not exist.

OK or NG
OK >> Replace reclining motor.
NG >> Repair or replace harness between connectors driver seat control unit and reclining motor.

AUTOMATIC DRIVE POSITIONER

Check Front Lifting Sensor Circuit

1. CHECK FUNCTION

() With CONSULT-II

Check operation with "LIFT FR PULSE" on the DATA MONITOR to make sure the pulse changes.

Monitor item [OPERATION or UNIT]	Contents
LIFT FR PULSE	The front lifting position (pulse) judged from the front lifting sensor is displayed

Without CONSULT-II

1. Turn ignition switch OFF.
2. Check signal between driver seat control unit connector and ground, with oscilloscope.

OK or NG
OK >> Front lifting sensor circuit is OK.
NG >> GO TO 2.

2. CHECK FRONT LIFTING SENSOR HARNESS CONTINUITY

1. Disconnect driver seat control unit connector and front lifting motor connector.
2. Check continuity between driver seat control unit connector B152 terminals 19, 28C and front lifting motor connector B164 terminals 19, 28A.

OK or NG
OK >> Replace front lifting motor.
NG >> Repair or replace harness between driver seat control unit and front lifting motor.

AUTOMATIC DRIVE POSITIONER

Check Rear Lifting Sensor Circuit

1. Check rear lifting sensor input/output signal

With CONSULT-II

Check operation with "LIFT RP PULSE" on the DATA MONITOR to make sure pulse changes.

Monitor item [OPERATION or UNIT	Contents
LIFT RR PULSE	The rear lifting position (pulse) judged from the rear lifting sensor is displayed.

Without CONSULT-II

1. Turn ignition switch OFF.
2. Check signal between driver seat control unit connector ground, with oscilloscope.

OK or NG

OK >> Rear lifting sensor circuit is OK.
NG >> GO TO 2.

2. CHECK REAR LIFTING SENSOR HARNESS CONTINUITY

1. Disconnect driver seat control unit connector and rear lifting motor connector.
2. Check continuity between driver seat control unit connector B152 terminals 28C, 30 and rear lifting motor connector B162 terminals 28B, 30.

$$
\begin{array}{ll}
28 C(B / W)-28 B(B / W) & \text { : Continuity should exist. } \\
30(R / W)-30(R / W) & \text { : Continuity should exist. }
\end{array}
$$

3. Check continuity between driver seat control unit connector B152 terminals 28C, 30 and ground.

$28 C(B / W)-$ Ground	: Continuity should not exist.
$30(R / W)-$ Ground	: Continuity should not exist.

OK or NG
OK >> Replace rear lifting motor.
NG >> Repair or replace harness between driver seat control unit and rear lifting motor.

AUTOMATIC DRIVE POSITIONER

Check Telescopic Sensor Circuit

1. CheCK FUNCTION

(®) With CONSULT-II

Operate the telescopic switch with "TELESCO SEN" on the DATA MONITOR to make sure the voltage changes.

Monitor item [OPERATION or UNIT]		Contents	DATA MONITOR TILT SEN					
	"V"		telesco sen					
TELESCO							The telescoping position (voltage) judged from the telescoping sensor signal is displayed.	
SEN		MIR/SE RH R-L						
			MIR/SE RH U-D					
			MIR/SE LH R-L					
			Page Up	Page Down				
			SETTING	$\begin{array}{\|c\|} \hline \text { Numerical } \\ \hline \end{array}$				
			MODE	BACK	LIGHT	COPY	PIIA0295E	

8Without CONSULT-II

1. Turn ignition switch OFF.
2. Check voltage between automatic drive positioner control unit connector and ground.

Connector	Terminals (Wire color)		Condition	Voltage (V) (Approx.)
	(+)	(-)		
M49	23 (Y/B)	Ground	Telescopic top position	1
			Telescopic bottom position	4

OK >> Telescopic sensor circuit is OK.
NG >> GO TO 2.

2. CHECK HARNESS CONTINUITY

1. Disconnect automatic drive positioner control unit connector and tilt sensor and telescopic sensor connector.
2. Check continuity harness between automatic drive positioner control unit connector M49 terminals 23 and tilt sensor and telescopic sensor connector M28 terminals 3.

23 (Y/B) - 3 (Y/B) : Continuity should exist.
3. Check continuity harness between automatic drive positioner control unit connector M49 terminals 23 and ground.

$$
23 \text { (Y/B) - Ground : Continuity should not exist. }
$$

OK or NG
OK >> Replace tilt sensor and telescopic sensor.

NG >> Repair or replace harness between automatic drive positioner control unit and tilt sensor and telescopic sensor.

AUTOMATIC DRIVE POSITIONER

Check Tilt Sensor Circuit

1. CHECK TILT SENSOR

(1) With CONSULT-II

With "TILT SEN" on the DATA MONITOR, operate the tilt switch to make sure voltage changes.

Monitor item [OPERATION or UNIT]		Contents
TILT SEN	"V"	The tilt position (voltage) judged from the tilt sensor sig- nal is displayed.

DATA MONITOR				
SELECT MONITOR ITEM				
TILT SEN				
TELESCO SEN				
MIR/SE RH R-L				
MIR/SE RH U-D				
MIR/SE LH R-L				
Page Up	Page Down			
SEtTING	Numerical Display			
MODE	ВАСК	LIGHT	COPY	

Without CONSULT-II

1. Turn ignition switch OFF.
2. Check voltage between automatic drive positioner control unit connector and ground.

Connector	Terminals (Wire color)		Condition	Voltage (V) (Approx.)
	$(+)$	$(-)$		2
M49	$7(\mathrm{Y} / \mathrm{R})$	Ground	Tilt top position	4
		Tilt bottom position	4	

OK or NG

OK >> Tilt sensor circuit is OK.
NG >> GO TO 2.

2. CHECK HARNESS

1. Disconnect automatic drive positioner control unit connector and tilt sensor and telescopic sensor connector.
2. Check continuity harness between automatic drive positioner control unit connector M49 terminals 7 and tilt sensor and telescopic sensor connector M28 terminals 2.

7 (Y/R)-2 (Y/R)
: Continuity should exist.
3. Check continuity harness between automatic drive positioner control unit connector M49 terminals 7 and ground.

$$
7 \text { (Y/R) - Ground } \quad \text { : Continuity should not exist. }
$$

OK or NG

OK >> Replace tilt sensor and telescopic sensor.
NG >> Repair or replace harness between automatic drive positioner control unit and tilt sensor and telescopic sensor.

AUTOMATIC DRIVE POSITIONER

Check Driver Side Mirror Sensor Circuit

1. CHECK DOOR MIRROR FUNCTION

Check the following.

Operation malfunction in memory control
NOTE:
If a door mirror face position is set to an implausible angle, the set position may not be reproduced.
OK or NG
OK >> GO TO 2.
NG >> Repair the malfunctioning parts, and check the symptom again.

2. CHECK MIRROR SENSOR INSPECTION

With CONSULT-II

Make sure "ON" is displayed on "MIR/SE LH R-L, MIR/SE LH U-D" in the DATA MONITOR.

Monitor item [OPERATION or UNIT]		Contents
MIR/SE LH R-L	"V"	Voltage output from LH door mirror sensor (LH/RH) is displayed.
MIR/SE LH U-D	"V"	Voltage output from LH door mirror sensor (UP/DOWN) is displayed.

Without CONSULT-II

1. Turn ignition switch to ACC position.
2. Check voltage between door mirror (driver side) connector and ground.

Connector	Terminals (Wire color)		Condition	Voltage (V) (Approx,)
	(+)	(-)		
D2	2 (W)	Ground	When motor is UP or DOWN operation	Changes between 3 (close to perk) - 1 (close to valley)
	10 (LG)		When motor is LEFT or RIGHT operation	Changes between 3 (close to right edge) 1 (close to left edge)

OK or NG
OK >> Driver side mirror sensor circuit is OK.

Door mirror connector

PIIB8585E

NG >> GO TO 3.

AUTOMATIC DRIVE POSITIONER

3. CHECK HARNESS CONTINUITY 1

1. Turn ignition switch OFF.
2. Disconnect automatic drive positioner control unit and door mirror (driver side) connector.
3. Check continuity between automatic drive positioner control unit connector M50 terminals 33, 41 and door mirror (driver side) connector D2 terminals 1, 9 .

$33(G / W)-1(O R)$: Continuity should exist.
$41(B / Y)-9(B R)$: Continuity should exist.

4. Check continuity between automatic drive positioner control unit connector M49 terminals 33, 41 and ground.
33 (G/W) - Ground : Continuity should not exist.
$41(B / Y)$ - Ground : Continuity should not exist.

OK or NG
OK >> GO TO 3.
NG >> Repair or replace harness between automatic drive positioner control unit and door mirror (driver side).

4. CHECK HARNESS CONTINUITY 2

1. Check continuity between automatic drive positioner control unit connector M49 terminal 6, 22 and door mirror (driver side) connector D2 terminal 2, 10.

$6(P / L)-2(W)$: Continuity should exist.
$22(\mathrm{~L} / \mathrm{Y})-10(\mathrm{LG})$: Continuity should exist.

2. Check continuity between automatic drive positioner control unit connector M49 terminal 6, 22 and ground.

6 (P/L) - Ground : Continuity should not exist.
22 (L/Y) - Ground : Continuity should not exist.

OK or NG

OK >> Check the condition of the harness and connector.
NG >> Repair or replace harness between automatic drive positioner control unit and door mirror (driver side).

Check Passenger Side Mirror Sensor Circuit

1. CHECK DOOR MIRROR FUNCTION

Check the following.
Operation malfunction in memory control
NOTE:
If a door mirror face position is set to an implausible angle, the set position may not be reproduced.
OK or NG
OK >> GO TO 2.
NG >> Repair the malfunctioning parts, and check the symptom again.

AUTOMATIC DRIVE POSITIONER

2. CHECK MIRROR SENSOR INSPECTION

With CONSULT-II

Make sure "ON" is displayed on "MIR/SE RH R-L, MIR/SE RH U-D" in the DATA MONITOR.

Monitor item [OPERATION or UNIT]		Contents
MIR/SE RH R-L	"V"	Voltage output from RH door mirror sensor (LH/RH) is displayed.
MIR/SE RH U-D	"V"	Voltage output from RH door mirror sensor (UP/DOWN) is displayed.

DATA MONITOR				
SELECT MONITOR ITEM				
TELESCO SEN				
MIR/SE RH R-L				
MIR/SE RH U-D				
MIR/SE LH R-L				
MIR/SE LH U-D				
Page Up	Page Down			
SETTING	Numerical Display			
MODE	BACK	LIGHT	COPY	
PIIA0197E				

Without CONSULT-II

1. Turn ignition switch to ACC position.
2. Check voltage between door mirror (passenger side) connector and ground.

Connector	Terminals (Wire color)		Condition	Voltage (V) (Approx.)
	(+)	(-)		
D32	2 (LG)	Ground	When motor is UP or DOWN operation	Changes between 3 (close to perk) - 1 (close to valley)
	10 (P)		When motor is LEFT or RIGHT operation	Changes between 1 (close to left edge) 3 (close to right edge)

OK or NG

OK >> Passenger side mirror sensor circuit is OK.

3. check harness continuity 1

1. Disconnect automatic drive positioner control unit and door mirror (passenger side) connector.
2. Check continuity between automatic drive positioner control unit connector M50 terminal 33, 41 and door mirror (passenger side) connector D32 terminal 1, 9.

$33(G / W)-1(B R)$: Continuity should exist.
$41(B / Y)-9(G)$: Continuity should exist.

3. Check continuity between automatic drive positioner control unit connector M50 terminals 33, 41 and ground.
$\begin{array}{ll}33(G / W)-\text { Ground } & \text { : Continuity should not exist. } \\ 41(B / Y)-\text { Ground } & \text { : Continuity should not exist. }\end{array}$

OK or NG
OK >> GO TO 3.
NG >> Repair or replace harness between automatic drive positioner control unit and door mirror (passenger side).

AUTOMATIC DRIVE POSITIONER

4. CHECK HARNESS CONTINUITY 2

1. Check continuity between automatic drive positioner control unit connector M49 terminal 5, 21 and door mirror (passenger side) connector D32 terminal 2, 10.

$5(O R)-2(L G)$: Continuity should exist.
$21(G / Y)-10(P)$: Continuity should exist.

2. Check continuity between automatic drive positioner control unit connector M49 terminal 5, 21 and ground.

5 (OR) - Ground : Continuity should not exist.
21 (G/Y) - Ground : Continuity should not exist.

OK or NG
OK >> Check the condition of the harness and connector.
NG >> Repair or replace harness between automatic drive positioner control unit and door mirror (passenger side).

Check Steering and Door Mirror Sensor Power Supply and Ground Circuit

1. Turn ignition switch OFF.
2. Check voltage between automatic drive positioner control unit connector M50 terminal 33 and ground.

33 (G/W) - Ground : Approx. 5V
OK or NG
OK >> GO TO 2.
NG >> Replace automatic drive positioner control unit.

2. CHECK STEERING AND DOOR MIRROR SENSOR GROUND CIRCUIT

Check continuity between automatic drive positioner control unit connector M50 terminal 41 and ground.

41 (B/Y) - Ground : Continuity should exist.
$\frac{\text { OK or NG }}{\text { OK }}$

- GO TO 3. (Door mirror sensor)
- GO TO 4. (Steering sensor)

NG >> Replace automatic drive positioner control unit.

AUTOMATIC DRIVE POSITIONER

3. CHECK HARNESS CONTINUITY (DOOR MIRROR SENSOR)

1. Disconnect automatic drive positioner control unit and door mirror (driver side or passenger side) connector.
2. Check continuity between automatic drive positioner control unit connector M50 terminal 33, 41 and door mirror connector D2 (driver side) or D32 (passenger side) terminal 1, 9.

$$
\begin{array}{ll}
33(G / W)-1(O R) & \text { : Continuity should exist. } \\
41(B / Y)-9(B R) & \text { : Continuity should exist. }
\end{array}
$$

3. Check continuity between automatic drive positioner control unit connector M50 terminal 33, 41 and ground.

33 (G/W) - Ground : Continuity should not exist.
41 (B/Y) - Ground : Continuity should not exist.

OK or NG

OK >> Check the condition of the harness and connector.
NG >> Repair or replace harness between automatic drive positioner control unit and door mirror (driver side or passenger side).

4. CHECK HARNESS CONTINUITY (STEERING SENSOR)

1. Disconnect automatic drive positioner control unit and tilt sensor and telescopic sensor connector.
2. Check continuity between automatic drive positioner control unit connector M50 terminal 33, 41 and tilt sensor and telescopic sensor connector M28 terminal 1, 4.

33 (G/W) - 1 (G/W) : Continuity should exist.
41 (B/Y) - 4 (B/Y) : Continuity should exist.
3. Check continuity between automatic drive positioner control unit connector M50 terminal 33, 41 and ground.

33 (G/W) - Ground : Continuity should not exist.
41 (B/Y) - Ground : Continuity should not exist.

OK or NG
OK >> Check the condition of the harness and connector.
NG >> Repair or replace harness between automatic drive positioner control unit and tilt sensor and telescopic sensor.
Check Front Door Switch (Driver Side) Circuit

(1) With CONSULT-II

Touch "BCM" with "DOOR SW-DR" on the DATA MONITOR, check ON/OFF operation when the driver door is open and closed. *: Refer to BL-37, "Data Monitor" .

Monitor item [OPERATION or UNIT]
DOOR SW*
"ON/
DR

AUTOMATIC DRIVE POSITIONER

2. CHECK FRONT DOOR SWITCH (DRIVER SIDE)

1. Turn ignition switch OFF.
2. Disconnect front door switch connector.
3. Check continuity between front door switch connector and ground part of door switch.

Terminals			Door switch
1	Ground part of door switch	Pushed	Continuity
	Released	No	

OK or NG
OK >> GO TO 3.
NG >> Replace front door switch (driver side).

3. CHECK FRONT DOOR (DRIVER SIDE) HARNESS CONTINUITY

1. Disconnect BCM connector.
2. Check continuity between BCM connector B14 terminal 62 and front door switch connector B26 terminal 1.

62 (W) - 1 (W) : Continuity should exist.
3. Check continuity between BCM connector B14 terminal 62 and ground.

62 (W) - Ground : Continuity should not exist.
OK or NG
OK >> Front door switch (driver side) circuit is OK.
NG >> Repair or replace harness between BCM and front door
 switch (driver side).

AUTOMATIC DRIVE POSITIONER

Check Sliding Switch Circuit

1. CHECK FUNCTION

With CONSULT-II

With "SLIDE SW-FR, SLIDE SW-RR" on the DATA MONITOR, operate the sliding switch to check ON/OFF operation.

Monitor item [OPERATION or UNIT]		Contents
SLIDE SW - FR	"ON/ OFF"	ON/OFF status judged from the sliding switch (FR) signal is displayed.
SLIDE SW - RR	"ON/ OFF"	ON/OFF status judged from the sliding switch (RR) signal is displayed.

DATA MONITOR				
SELECT MONITOR ITEM				
SLIDE SW-FR				
SLIDE SW-RR				
RECLN SW-FR				
RECLN SW-RR				
LIFT FR SW-UP				
Page Down				
SETTING	Numerical Display			
MODE	BACK	LIGHT	COPY	PlIA0313E

Without CONSULT-II

1. Turn ignition switch OFF.
2. Sliding switch operate, check voltage between driver seat control unit connector and ground.

Connector	Terminals (Wire color)		Sliding switch condition	Voltage (V) (Approx.)
	$(+)$	$(-)$		0
	$24(\mathrm{~L} / \mathrm{R})$		FORWARD	0
		Other than above	Battery voltage	
		BACKWARD	0	
			Other than above	Battery voltage

OK or NG

OK >> Sliding switch circuit is OK.
NG >> GO TO 2.

2. CHECK HARNESS CONTINUITY

1. Disconnect driver seat control unit connector and power seat switch connector.
2. Check continuity between driver seat control unit connector B152 terminals 24, 37 and power seat switch connector B175 terminals $24,37$.

$$
\begin{array}{ll}
24(L / R)-24(L / R) & \text { : Continuity should exist. } \\
37(W)-37(W) & \text { : Continuity should exist. }
\end{array}
$$

3. Check continuity between driver seat control unit connector B152 terminals 24, 37 and ground.

$$
\begin{aligned}
& 24 \text { (L/R) - Ground } \\
& 37 \text { (W) - Ground }
\end{aligned}
$$

: Continuity should not exist.
: Continuity should not exist.

OK or NG

OK >> GO TO 3.
NG >> Repair or replace harness between driver seat control unit and power seat switch.

AUTOMATIC DRIVE POSITIONER

3. CHECK SLIDING SWITCH

Sliding switch operate, check continuity between power seat switch connector B175 terminal 24, 27 and 61B.

Check Reclining Switch Circuit
 1. CHECK FUNCTION

With CONSULT-II

With "RECLINING SW-FR, RECLINING SW-RR" on the DATA MONITOR, operate the reclining switch to check ON/OFF operation.

Monitor item [OPERATION or UNIT]		Contents	DATA MONITOR							
		SELECT MONITOR ITEM								
RECLN SW - FR	$\begin{aligned} & \text { "ON/ } \\ & \text { OFF" } \end{aligned}$		ON/OFF status judged from the reclining switch (FR) signal is displayed.	SLIDE SW-FR						
		SLIDE SW-RR								
RECLN SW - RR	$\begin{aligned} & \text { "ON/ } \\ & \text { OFF" } \end{aligned}$	ON/OFF status judged from the reclining switch (RR) signal is displayed.		RECLN SW-FR						
			RECLN SW-RR							
			LIFT FR SW-UP							
 Page Down SETTING $\begin{array}{c}\text { Numerical } \\ \text { Display }\end{array}$ MODE BACK LIGHT COPY Len										

Without CONSULT-II

1. Turn ignition switch OFF.
2. Reclining switch operate, check voltage between driver seat control unit connector and ground.

Connector	Terminals (Wire color)		Reclining switch condition	Voltage (V) (Approx.)
	(+)	(-)		
B152	25 (L/OR)	Ground	FORWARD	0
			Other than above	Battery voltage
	38 (LG/B)		BACKWARD	0
			Other than above	Battery voltage

OK >> Reclining switch circuit is OK.
NG >> GO TO 2.

AUTOMATIC DRIVE POSITIONER

2. CHECK HARNESS CONTINUITY

1. Disconnect driver seat control unit connector and power seat switch connector.
2. Check continuity between driver seat control unit connector B152 terminals 25, 38 and power seat switch connector B175 terminals 25, 38.

$$
\begin{array}{ll}
25(\mathrm{~L} / \mathrm{OR})-25(\mathrm{~L} / \mathrm{OR}) & \text { : Continuity should exist. } \\
38(\mathrm{LG} / \mathrm{B})-38(\mathrm{LG} / \mathrm{B}) & \text { : Continuity should exist. }
\end{array}
$$

3. Check continuity between driver seat control unit connector B152 terminals 25, 38 and ground.

$$
\begin{array}{ll}
25(\text { LO/R) - Ground } & \text { : Continuity should not exist. } \\
38(\text { LG/B) - Ground } & \text { : Continuity should not exist. }
\end{array}
$$

OK or NG
OK >> GO TO 3.
NG >> Repair or replace harness between driver seat control unit and power seat switch.

3. check reclining switch

Reclining switch operate, check continuity between power seat switch connector B175 terminal 25, 38 and 61B.

Connector	Terminal		Reclining switch condition	Continuity
B175	25		FORWARD	Yes
		61B	Other than above	No
			BACKWARD	Yes
			Other than above	No

OK or NG
OK >> Check the condition of the harness and connector. NG >> Replace power seat switch.

AUTOMATIC DRIVE POSITIONER

Check Front Lifting Switch Circuit

1. CHECK FUNCTION

(C) With CONSULT-II

With "LIFT FR SW-UP, LIFT FR SW-DN" on the DATA MONITOR, operate the front lifting switch to check ON/ OFF operation.

Monitor item [OPERATION or UNIT]		Contents
LIFT FR SW - DN	"ON/ OFF"	ON/OFF status judged from the FR lifter switch (DOWN) signal is displayed.
LIFT RR SW - UP	"ON/ OFF"	ON/OFF status judged from the RR lifter switch (UP) signal is displayed.

DATA MONITOR				
SELECT MONITOR ITEM				
LIFT FR SW-DN				
LIFT RR SW-UP				
LIFT RR SW-DN				
MIR CON SW-UP				
MIR CON SW-DN				
Page Up	Page Down			
SETTING	Numerical Display			
MODE	BACK	LIGHT	COPY	
PIIA0323E				

Without CONSULT-II

1. Turn ignition switch OFF.
2. Front lifting switch operate, check voltage between driver seat control unit connector and ground.

Connector	Terminals (Wire color)		Front lifting switch condition	Voltage (V) (Approx.)
	(+)	(-)		
B152	26 (L/P)	Ground	UP	0
			Other than above	Battery voltage
	39 (L/G)		DOWN	0
			Other than above	Battery voltage

OK or NG

OK >> Front lifting switch circuit is OK.

NG >> GOTO 2.

2. CHECK HARNESS CONTINUITY

1. Disconnect driver seat control unit connector and power seat switch connector.
2. Check continuity between driver seat control unit connector B152 terminals 26, 39 and power seat switch connector B175 terminals 26, 39.

$26(L / P)-26(L / P)$: Continuity should exist.
$39(L / G)-39(L / G)$: Continuity should exist.

3. Check continuity between driver seat control unit connector B152 terminals 26, 39 and ground

$$
\begin{array}{ll}
26(L / P)-\text { Ground } & \text { : Continuity should not exist. } \\
39(L / G)-\text { Ground } & \text { : Continuity should not exist. }
\end{array}
$$

OK or NG
OK >> GO TO 3.
NG >> Repair or replace harness between driver seat control unit and power seat switch.

AUTOMATIC DRIVE POSITIONER

3. CHECK FRONT LIFTING SWITCH

Front lifting switch operate, check continuity between power seat switch connector B175 terminal 26, 39 and 61B.

Connector	Terminals		Front lifting switch condition	Continuity
B175	26		UP	Yes
		61 B	Other than above	No
	39		Yes	
			No	

OK or NG
OK >> Check the condition of the harness and connector.
NG >> Replace power seat switch.

Check Rear Lifting Switch Circuit
 1. Check function

(1) With CONSULT-II

With "LIFT RR SW-UP, LIFT RR SW-DN" on the DATA MONITOR, operate the rear lifting switch to check ON/ OFF operation.

Monitor item [OPERATION or UNIT]		Contents	DATA MONITOR					
		SELECT MONITOR ITEM						
LIFT RR SW-UP	"ON/OFF"		(ON/OFF) status judged from the RR lifter switch (UP) signal is displayed.	LIFT FR SW-DN				
		LIFT RR SW-UP						
		LIFT RR SW-DN						
LIFT RR SW-DN	"ON/OFF"	(ON/OFF) status judged from the RR lifter switch (DOWN) signal is displayed.		MIR CON SW-UP				
				MIR CON SW-DN				
			Page Up	Page Down				
			SETTING	Numerical Display				
			mode	BACK	LIGHT	COPY	PIIA0323E	

Without CONSULT-II

1. Turn ignition switch OFF.
2. Rear lifting switch operate, check voltage between driver seat control unit connector and ground.

Connector	Terminals (Wire color)		Rear lifting switch condition	Voltage (V) (Approx.)
	(+)	(-)		
B152	27 (L)	Ground	UP	0
			Other than above	Battery voltage
	40 (L/Y)		DOWN	0
			Other than above	Battery voltage

OK or NG
OK >> Rear seat lifting switch circuit is OK.

NG >> GO TO 2.

AUTOMATIC DRIVE POSITIONER

2. CHECK REAR LIFTING SWITCH HARNESS CONTINUITY

1. Disconnect driver seat control unit connector and power seat switch connector.
2. Check continuity between driver seat control unit connector B152 terminals 27, 40 and power seat switch connector B175 terminals 27, 40.
27 (L) - 27 (L)
: Continuity should exist.
40 (L/Y) - 40 (L/Y) : Continuity should exist.
3. Check continuity between driver seat control unit connector B152 terminals 27, 40 and ground.
27 (L) - Ground
: Continuity should not exist.
40 (L/Y) - Ground
: Continuity should not exist.

OK or NG
OK >> GO TO 3.
NG >> Repair or replace harness between driver seat control unit and power seat switch.

3. check rear lifting switch

Rear lifting switch operate, check continuity between power seat switch connector B175 terminal 27, 40 and 61B.

Connector	Terminal		Rear lifting switch condition	Continuity
B175	27	UP	Yes	
		61 B	Other than above	No
			Yes	
			No	

OK or NG

OK >> Check the condition of the harness and connector.
NG >> Replace power seat switch.

Check Power Seat Switch Ground Circuit

1. CHECK POWER SEAT SWITCH GROUND CIRCUIT

1. Turn ignition switch OFF.
2. Disconnect power seat switch connector.
3. Check continuity between power seat switch connector B175 terminal 61B and ground.

61B (B/Y) - Ground : Continuity should exist.

OK or NG

OK >> Check the condition of the harness and connector.
NG >> Repair or replace harness between power seat switch and ground.

AUTOMATIC DRIVE POSITIONER

Check Telescopic Switch Circuit

1. CHECK FUNCTION

(1) With CONSULT-II

With "TELESCO SW-FR, TELESCO SW-RR" on the DATA MONITOR, operate the ADP steering switch to check ON/OFF operation.

Monitor item [OPERATION or UNIT]		Contents
TELESCO SW-FR	"ON/OFF"	(ON/OFF) status judged from the telescoping switch (FR) signal is displayed.
TELESCO SW-RR	"ON/OFF"	(ON/OFF) status judged from the telescoping switch (RR) signal is displayed.

DATA MONITOR				
SELECT MONITOR ITEM				
TELESCO SW-FR				
TELESCO SW-RR				
TILT SW-UP				
TILT SW-DOWN				
MEMORY SW 1				
Page Up	Page Down			
SETTING	Numerical Display			
MODE	BACK	LIGHT	COPY	
PIIA0315E				

Without CONSULT-II

1. Turn ignition switch OFF.
2. Telescopic switch operate, check voltage between automatic drive positioner control unit connector and ground.

Connector	Terminals (Wire color)		Telescopic switch condition	Voltage (V) (Approx.)
	(+)	(-)		
M49		Ground	FORWARD	0
	(BR)		Other than above	5
	27 (LG)		BACKWARD	0
			Other than above	5

OK or NG

OK >> Telescopic switch circuit is OK.

NG >> GO TO 2.

2. CHECK TELESCOPIC CIRCUIT HARNESS CONTINUITY

1. Disconnect automatic drive positioner control unit connector and ADP steering switch connector.
2. Check continuity between automatic drive positioner control unit connector M49 terminals 11, 27 and ADP steering switch connector M13 terminals 4, 5 .

$11(B R)-5(B R)$: Continuity should exist.
$27(L G)-4(L G)$: Continuity should exist.

3. Check continuity between automatic drive positioner control unit connector M49 terminals 11, 27 and ground.

$$
\begin{array}{ll}
11(B R)-\text { Ground } & \text { : Continuity should not exist. } \\
27(L G)-\text { Ground } & \text { : Continuity should not exist. }
\end{array}
$$

OK or NG
OK >> GO TO 3.
NG >> Repair or replace harness between automatic drive positioner control unit and ADP steering switch.

AUTOMATIC DRIVE POSITIONER

3. CHECK TELESCOPIC SWITCH

ADP steering switch operate, check continuity between ADP steering switch connector M13 terminal 4,5 and 1.

Connector	Terminal		ADP steering switch condition	Continuity
M13	5	FORWARD	Yes	
		1	Other than above	No
			Yes	
			No	

OK or NG
OK >> GO TO 4.
NG >> Replace ADP steering switch.

4. CHECK ADP STEERING SWITCH GROUND CIRCUIT

Check continuity between ADP steering switch connector M13 terminal 1 and ground.

$$
1 \text { (B) - Ground : Continuity should exist. }
$$

OK or NG
OK >> Check the condition of the harness and connector.
NG >> Replace or replace harness between ADP steering switch and ground.

AUTOMATIC DRIVE POSITIONER

Check Tilt Switch Circuit

1. Check function

(1) With CONSULT-II

With "TILT SW-UP, TILT SW-DOWN" on the DATA MONITOR, operate the ADP steering switch to check ON/ OFF operation.

Monitor item [OPERATION or UNIT]		Contents
TILT SW-UP	"ON/OFF"	(ON/OFF) status judged from the tilt switch (UP) signal is displayed.
TILT SW-DOWN	"ON/OFF"	(ON/OFF) status judged from the tilt switch (DOWN) signal is displayed.

DATA MONITOR				
SELECT MONITOR ITEM				
TELESCO SW-FR				
TELESCO SW-RR				
TILT SW-UP				
TILT SW-DOWN				
MEMORY SW 1				
Page Up	Page Down			
SETTING	Numerical Display			
MODE	BACK	LIGHT	COPY	
PIIA0315E				

Without CONSULT-II

1. Turn ignition switch OFF.
2. Tilt switch operate, check voltage between automatic drive positioner control unit connector and ground.

```
NG >> GO TO 2.
```


2. CHECK TILT SWITCH CIRCUIT HARNESS CONTINUITY

1. Disconnect automatic drive positioner control unit connector and ADP steering switch connector.
2. Check continuity between automatic drive positioner control unit connector M49 terminals 1, 17 and ADP steering switch connector M13 terminals 2, 3 .

$1(R)-2(R)$: Continuity should exist.
$17(R / B)-3(R / B)$: Continuity should exist.

3. Check continuity between automatic drive positioner control unit connector M49 terminals 1, 17 and ground.

$1(R)-$ Ground	: Continuity should not exist.
$17(R / B)-$ Ground	: Continuity should not exist.

OK or NG
OK >> GO TO 3.
NG >> Repair or replace harness between automatic drive positioner control unit and ADP steering switch.

AUTOMATIC DRIVE POSITIONER

3. CHECK ADP TILT STEERING SWITCH

ADP steering switch operate, check continuity between ADP steering switch.

Connector	Terminal		ADP steering swit	Continuity	ADP steering switch
M13	2	1	UP	Yes	
			Other than above	No	
	3		DOWN	Yes	
	3		Other than above	No	
OK or NG					
g switch.					

4. CHECK ADP STEERING SWITCH GROUND CIRCUIT

Check continuity between ADP steering switch connector M13 terminal 1 and ground.

1 (B) - Ground : Continuity should exist.
OK or NG
OK >> Check the condition of the harness and connector.
NG >> Repair or replace harness between ADP steering switch and ground.

AUTOMATIC DRIVE POSITIONER

Check Door Mirror Remote Control Switch (Changeover Switch) Circuit

1. CHECK FUNCTION

(1) With CONSULT-II

Check the operation on "MIR CHNG SW-R" or "MIR CHNG SW-L" in the DATA MONITOR.

Monitor item [OPERATION or UNIT]		Contents
MIR CHNG SW-R	"ON/	
OFF"	ON/OFF status judged from the door mirror remote control switch (switching to RIGHT) signal is displayed.	
MIR CHNG SW-L	"ON/	ON/OFF status judged from the door mirror OFF" remote control switch (switching to LEFT) signal is displayed.

DATA MONITOR				
SELECT MONITOR ITEM				
MIR CON SW-RH				
MIR CON SW-LH				
MIR CHNG SW-R				
MIR CHNG SW-L				
SET SW				
Page Up	Page Down			
SETTING	NumericalDisplay			
MODE	BACK	LIGHT	COPY	
PIIA0191E				

Without CONSULT-II

1. Turn ignition switch ACC.
2. Changeover switch operate, check voltage between automatic drive positioner control unit connector and ground.

Connector	Terminals (Wire color)		Changeover switch condition	Voltage (V) (Approx.)
	(+)	(-)		
M49	2 (G/W)	Ground	RIGHT	0
			Other than above	5
	18 (L/OR)		LEFT	0
			Other than above	5

OK or NG

OK >> Door mirror remote control switch (changeover switch) circuit is OK.

2. CHECK CHANGEOVER SWITCH CIRCUIT HARNESS CONTINUITY

1. Turn ignition switch OFF.
2. Disconnect automatic drive positioner control unit and door mirror remote control switch connector.
3. Check continuity between automatic drive positioner control unit connector M49 terminal 2, 18 and door mirror remote control switch connector M18 terminal 2, 3.

$2(G / W)-3(G / W)$	$:$ Continuity should exist.
$18(\mathrm{~L} / \mathrm{OR})-\mathbf{2 (L / O R)}$: Continuity should exist.

4. Check continuity between automatic drive positioner control unit connector M49 terminal 2, 18 and ground.

$$
\begin{array}{ll}
2(G / W)-\text { Ground } & \text { : Continuity should not exist. } \\
18(L / O R)-\text { Ground } & \text { : Continuity should not exist. }
\end{array}
$$

OK or NG
OK >> GO TO 3.
NG >> Repair or replace harness between automatic drive positioner control unit and door remote control switch.

AUTOMATIC DRIVE POSITIONER

3. CHECK DOOR MIRROR REMOTE CONTROL SWITCH GROUND CIRCUIT

Check continuity between door mirror remote control switch connector M18 terminal 13 and ground.

13 (B) - Ground : Continuity should exist.
OK or NG
OK >> GO TO 4.
NG >> Repair or replace harness.

4. CHECK DOOR MIRROR REMOTE CONTROL SWITCH (CANGEOVER SWITCH)

Changeover switch operate, check continuity between door mirror remote control switch connector M18 terminal 2, 3 and 13.

Connector	Terminal		Changeover switch condition	Continuity
M18	3	RIGHT	Yes	
		13	Other than above	No
			Yes	
		Other than above	No	

OK or NG
OK >> Check the condition of the harness and the connector.
NG >> Replace door mirror remote control switch.

PIIB3167E

AUTOMATIC DRIVE POSITIONER

Check Door Mirror Remote Control Switch (Mirror Switch) Circuit
 1. CHECK DOOR MIRROR REMOTE CONTROL SWITCH (MIRROR SWITCH) SIGNAL

(1) With CONSULT-II

Check the operation on "MIR CON SW-UP/DN" and "MIR CON SW-RH/LH" in the DATA MONITOR.

$\begin{array}{c}\text { Monitor item } \\ \text { [OPERATION or UNIT] }\end{array}$		Contents
MIR CON SW-UP	"ON/	
OFF"		

remote control switch (UP) signal is displayed.\end{array}\right\}\)| "ON/ | | |
| :--- | :--- | :--- |
| OFF" | ON/OFF status judged from the door mirror
 remote control switch (DOWN) signal is dis-
 played. | |
| MIR CON SW-RH | "ON/ | ON/OFF status judged from the door mirror
 remote control switch (RIGHT) signal is dis-
 played. |
| MIR CON SW-LH | "ON/ | ON/OFF status judged from the door mirror
 remote control switch (LEFT) signal s displayed. |

DATA MONITOR				
SELECT MONITOR ITEM				
LIFT RR SW-DN				
MIR CON SW-UP				
MIR CON SW-DN				
MIR CON SW-RH				
MIR CON SW-LH				
Page Up	Page Down			
SETTING	NumericalDisplay			
MODE	BACK	Light	COPY	
PIIA0199E				

Without CONSULT-II

1. Turn ignition switch ACC.
2. Mirror switch operate, check voltage between automatic drive positioner control unit connector and ground.

Connector	Terminals (Wire color)		Mirror switch condition	Voltage (V) (Approx.)	
	(+)	$(-)$			
M49	3 (GY)	Ground	UP	0	C/U connector
			Other than above	5	34
	4 (Y)		LEFT	0	
			Other than above	5	
	19 (GY/L)		DOWN	0	V
			Other than above	5	$\oplus \Theta$
	20 (PU)		RIGHT	0	
			Other than above	5	

OK or NG
OK >> Door mirror remote control switch (mirror switch) circuit is OK.
NG >> GO TO 2.

AUTOMATIC DRIVE POSITIONER

2. CHECK HARNESS CONTINUITY

1. Turn ignition switch OFF.
2. Disconnect automatic drive positioner control unit and door mirror remote control switch connector.
3. Check continuity between automatic drive positioner control unit connector M49 terminal 3, 4, 19, 20 and door mirror remote control switch connector M18 terminal 4, 5, 6, 14.

$3(G Y)-6(G Y)$: Continuity should exist.
$4(\mathrm{Y})-5(\mathrm{Y})$: Continuity should exist.
$19(\mathrm{GY/L})-14(\mathrm{GY} / \mathrm{L})$: Continuity should exist.
$20(\mathrm{PU})-\mathbf{4}$ (PU)	: Continuity should exist.

4. Check continuity between automatic drive positioner control unit connector M49 terminal 3, 4, 19, 20 and ground.

$3($ GY $)-$ Ground	: Continuity should not exist.
$4($ Y) - Ground	: Continuity should not exist.
$19($ GY/L) - Ground	: Continuity should not exist.
$20($ PU $)-$ Ground	: Continuity should not exist.

$\frac{\mathrm{OK} \text { or } \mathrm{NG}}{\mathrm{OK} \quad \gg \mathrm{GO} \text { TO } 4 .}$
NG >> Repair or replace harness between automatic drive positioner control unit and door mirror remote control switch.

3. CHECK DOOR MIRROR REMOTE CONTROL SWITCH GROUND CIRCUIT

Check continuity between door mirror remote control switch connector M18 terminal 13 and ground.

$$
13 \text { (B) - Ground } \quad \text { : Continuity should exist. }
$$

OK or NG
OK >> GO TO 4.
NG >> Repair or replace harness.

4. CHECK DOOR MIRROR REMOTE CONTROL SWITCH (MIRROR SWITCH)

Mirror switch operate, check continuity between door mirror remote control switch connector M18 terminal 4, 5, 6, 14 and 13.

Connector	Terminal		Mirror switch condition	Continuity
M18	4	13	RIGHT	Yes
			Other than above	No
	5		LEFT	Yes
			Other than above	No
	6		UP	Yes
			Other than above	No
	14		DOWN	Yes
			Other than above	No

OK or NG

OK >> Check the condition of the harness and the connector.
NG >> Replace door mirror remote control switch.

AUTOMATIC DRIVE POSITIONER

Check A/T Device (Park Position Switch) Circuit

1. CHECK FUNCTION

() With CONSULT-II

Make sure when the A/T selector lever is in P position, "P POSI SW" on the DATA MONITOR becomes ON.

Monitor item [OPERATION or UNIT]		Contents
P POSI SW	"ON/ OFF"	The selector lever position "P position (ON)/other than P position (OFF)" judged from the park position switch signal is displayed.

Without CONSULT-II

1. Turn ignition switch OFF.
2. Check voltage between drive seat control unit connector and ground.

Connector	Terminals (Wire color)		Condition	Voltage (V) (Approx.)
	(+)	(-)		
B152	17 (PU)	Ground	Selector lever sifted to P position.	0
			Selector lever other than P position.	Battery voltage
OK or NG				
OK >> Park position switch circuit is OK. NG >> GO TO 2.				

2. CHECK PARK POSITION SWITCH POWER SUPPLY CIRCUIT HARNESS

1. Turn ignition switch OFF.
2. Disconnect driver seat control unit connector and A / T device (park position switch) connector.
3. Check continuity between driver seat control unit connector B152 terminal 17 and A/T device (park position switch) connector M67 terminal 3.

17 (PU) - 3 (R/Y) : Continuity should exist.
4. Check continuity between driver seat control unit connector B152 terminal 17 and ground.

17 (PU) - Ground : Continuity should not exist.
OK or NG
OK >> GO TO 3.

NG >> Repair or replace harness between driver seat control unit and A / T device (park position switch).

AUTOMATIC DRIVE POSITIONER

3. CHECK A/T DEVICE (PARK POSITION SWITCH)

Check continuity between A/T device (park position switch) connector M67 terminal 2 and 3.

Connector	Terminal		Condition	Continuity
M67	2	3	P position	Yes
			No	

OK or NG

OK >> GO TO 4.
NG >> Replace A/T device (park position switch).

4. CHECK A/T DEVICE (PARK POSITION SWITCH) GROUND HARNESS

Check continuity between A/T device (park position switch) connector M67 terminal 2 and ground.

$$
2(B)-\text { Ground } \quad \text { : Continuity should exist. }
$$

OK or NG
OK >> Check the condition of the harness and connector.
NG >> Repair or replace harness between A/T device (park position switch) and ground.

Check Key Switch Circuit (With Intelligent Key)

1. CHECK KEY SWITCH POWER SUPPRY CIRCUIT (WITH CONSULT-II)
(D) With CONSULT-II

Touch "BCM". With "IGN KEY SW" on the DATA MONITOR, Check ON/OFF operation.
*: Refer to BL-37, "Data Monitor" .

Monitor item [OPERA- TION or UNIT]	Contents	
IGN KEY SW"*	"ON/ OFF"	Key inserted (ON)/key removed (OFF) status judged from the key-in detection switch is displayed.
OK or NG		
OK >> Key switch circuit is OK.		
NG >> GO TO 2.		

DATA MONITOR		
SELECT MONITOR ITEM IGN ON SW IGN ACC SW IGN START SW IGN KEY SW R POSITION SW Page Up Page Down SETTING Numerical Display MODE BACK LIGHT BACOPY		

AUTOMATIC DRIVE POSITIONER

2. CHECK KEY SWITCH POWER SUPPLY CIRCUIT

1. Turn ignition switch OFF.
2. Disconnect key switch and ignition knob switch connector.
3. Check voltage between key switch and ignition knob switch connector M22 terminal 3 and ground.

$$
3 \text { (L/R) - Ground : Battery voltage. }
$$

OK or NG
OK >> GO TO 3.
NG >> Check harness between key switch and fuse.

3. CHECK KEY SWITCH

Check continuity between key switch and ignition knob switch connector M22 terminal 3 and 4.

| Con-
 nector | Terminal | | Condition |
| :---: | :---: | :--- | :---: | Continuity

OK or NG
OK >> GO TO 4.
NG >> Replace key switch and ignition knob switch.

Key switch and ignition knob switch

4. CHECK HARNESS CONTINUITY

1. Disconnect key switch and ignition knob switch connector and BCM connector.
2. Check continuity between key switch and ignition knob switch connector M22 terminal 4 and BCM connector M3 terminal 37.

$$
4(B / W)-37(B / W) \quad: \text { Continuity should exist. }
$$

3. Check continuity between key switch and ignition knob switch connector M22 terminal 4 and ground.

$$
4 \text { (B/W) - Ground } \quad \text { : Continuity should not exist. }
$$

OK or NG
OK >> Key switch circuit is OK.
NG >> Repair or replace harness between key switch and igni-
 tion knob switch and BCM.

AUTOMATIC DRIVE POSITIONER

Check Key Switch Circuit (Without Intelligent Key)

1. CHECK KEY SWITCH (WITH CONSULT-II)

With CONSULT-II

Touch "BCM". With "IGN KEY SW" on the DATA MONITOR, Check ON/OFF operation.
*: Refer to BL-37, "Data Monitor"

Monitor item[OPERATION or UNIT]		Contents
IGN KEY SW*	$\begin{aligned} & \text { "ON/ } \\ & \text { OFF" } \end{aligned}$	Key inserted (ON)/key removed (OFF) status judged from the key-in detection switch is displayed.
OK or NG		
$\begin{array}{ll} l \mathrm{OK} & >\mathrm{Ke} \\ \mathrm{NG} & \gg \mathrm{GC} \end{array}$		circuit is OK.

DATA MONITOR				
SELECT MONITOR ITEM				
IGN ON SW				
IGN ACC SW				
IGN START SW				
IGN KEY SW				
R POSITION SW				
Page Up	Page Down			
SETTING	Numerical Display			
MODE	BACK	LIGHT	COPY	
PIIA0298E				

2. CHECK KEY SWITCH AND KEY LOCK SOLENOID POWER SUPPLY CIRCUIT

1. Turn ignition switch OFF.
2. Disconnect key switch connector.
3. Check voltage between key switch connector M23 terminal 2 and ground.

$$
2 \text { (L/R) - Ground } \quad \text { : Battery voltage. }
$$

OK or NG
OK >> GO TO 3.
NG >> Check harness between key switch and fuse.

3. CHECK KEY SWITCH

Check continuity between key switch connector M23 terminal 1 and 2.

Con- nector	Terminal		Condition	Continuity
M23	1	2	Key is inserted in ignition key cylinder.	Yes
			No	
OK or NG				
OK	\gg GO TO 4.			
NG	\gg Replace key switch.			

Key switch

AUTOMATIC DRIVE POSITIONER

4. CHECK HARNESS CONTINUITY

1. Disconnect key switch connector and BCM connector.
2. Check continuity between key switch connector M23 terminal 1 and BCM connector M3 terminal 37.

$$
1 \text { (B/W) - } 37 \text { (B/W) : Continuity should exist. }
$$

3. Check continuity between key switch connector M23 terminal 1 and ground.

$$
1 \text { (B/W) - Ground } \quad: \text { Continuity should not exist. }
$$

OK or NG

OK >> Key switch circuit is OK.
NG >> Repair or replace harness between key switch and BCM.

Check Seat Memory Switch Circuit
1. CHECK FUNCTION (WITH CONSULT-II)

(1) With CONSULT-II

With "SET SW, MEMORY SW1, MEMORY SW2" on the DATA MONITOR, operate the switch to check ON/ OFF operation.

Monitor item [OPERATION or UNIT]		Contents
MEMORY SW1	"ON/OFF"	ON/OFF status judged from the seat memory switch 1 signal is displayed.
MEMORY SW2	"ON/OFF"	ON/OFF status judged from the seat memory switch 2 signal is displayed.
SET SW	"ON/OFF"	ON/OFF status judged from the setting switch signal is displayed.

OK or NG
OK >> Seat memory switch circuit is OK.
NG >> GO TO 2.

AUTOMATIC DRIVE POSITIONER

2. CHECK SEAT MEMORY SWITCH

1. Turn ignition switch OFF.
2. Disconnect seat memory switch connector.
3. Check continuity between seat memory switch connector D22 terminal 1, 2, 3 and 4.

Connec- tor	Terminals		Condition	Continuity
D22	2	Memory switch 1: ON	Yes	
		Memory switch 1: OFF	No	
		Memory switch 2: ON	Yes	
		Memory switch 2: OFF	No	
	3	Set switch: ON	Yes	
		Set switch: OFF	No	

OK >> GO TO 3.
NG >> Replace seat memory switch.

3. CHECK HARNESS CONTINUITY

1. Disconnect driver seat control unit connector.
2. Check continuity between driver seat control unit connector B152 terminals 22, 34, 35 and seat memory switch connector D22 terminals 1, 2, 3 .

$22(R / B)-1(P)$: Continuity should exist.
$34($ L/W $)-3(G Y)$: Continuity should exist.
$35(\mathrm{~L} / \mathrm{B})-2(\mathrm{LG})$: Continuity should exist.

3. Check continuity between driver seat control unit connector B152 terminals 22, 34, 35 and ground.

22
34
35
NG

: Continuity should not exist.

34 (L/W) - Ground : Continuity should not exist.
35 (L/B) - Ground : Continuity should not exist.
K or NG
OK >> GOTO 4.
NG >> Repair or replace harness between driver seat control unit and seat memory switch.

4. CHECK SEAT MEMORY SWITCH GROUND CIRCUIT

Check continuity between seat memory switch connector D22 terminal 4 and ground.

4 (B) - Ground : Continuity should exist.

OK or NG	
OK	\gg Replace driver seat control unit.
NG	\gg Repair or replace harness between seat memory switch
and ground.	

AUTOMATIC DRIVE POSITIONER

Check Seat Memory Indicator Lamp Circuit

1. CHECK FUNCTION (WITH CONSULT-II)

(1) With CONSULT-II

With "MEMORY SW INDCTR" in ACTIVE TEST, check operation.

Test item	Description
MEMORY SW INDCTR	The memory switch indicator is lit by receiving the drive signal.
OK or NG	
OK $\quad \gg$ Seat memory indicator lamp circuit is OK.	
NG $\quad \gg$ GO TO 2.	

PIIA0319E

2. CHECK SEAT MEMORY SWITCH POWER SUPPLY CIRCUIT

1. Turn ignition switch OFF.
2. Disconnect seat memory switch connector.
3. Check voltage between seat memory switch connector D22 terminal 5 and ground.

$$
5(R) \text { - Ground } \quad \text { : Battery voltage }
$$

OK or NG
OK >> GO TO 4.
NG >> Repair or replace harness between fuse block (J/B) and seat memory switch.

3. CHECK HARNESS CONTINUITY

1. Disconnect driver seat control unit connector.
2. Check continuity between driver seat control unit connector B152 terminals 23, 36 and seat memory switch connector D22 terminals 6, 7 .

$$
\begin{array}{ll}
23(\mathrm{Y} / \mathrm{W})-6(\mathrm{PU}) & \text { : Continuity should exist. } \\
36(\mathrm{Y} / \mathrm{G})-7(\mathrm{~L}) & \text { : Continuity should exist. }
\end{array}
$$

3. Check continuity between driver seat control unit connector B152 terminals 23, 36 and ground.

23 (Y/W) - Ground : Continuity should not exist.
36 (Y/G) - Ground : Continuity should not exist.

OK or NG
OK >> GO TO 5.
NG >> Repair or replace harness between driver seat control unit and seat memory switch.

AUTOMATIC DRIVE POSITIONER

4. CHECK SEAT MEMORY SWITCH INDICATOR SIGNAL

Check voltage between driver seat control unit connector B152 terminals 23, 36 and ground.

$$
\begin{array}{ll}
23(\mathrm{Y} / \mathrm{W})-\text { Ground } & \text { : Battery voltage } \\
36(\mathrm{Y} / \mathrm{G})-\text { Ground } & \text { : Battery voltage }
\end{array}
$$

OK or NG
OK >> Seat memory indicator lamp circuit is OK.
NG >> Replace seat memory switch.

Check UART Communication Line Circuit

1. check uart line herness

1. Turn ignition switch OFF.
2. Disconnect driver seat control unit connector and automatic drive positioner control unit connector.
3. Check continuity between driver seat control unit connector B152 terminal 2, 8 and automatic drive positioner connector M49 terminal 10, 26.

$$
\begin{array}{ll}
2(P)-26(W) & \text { : Continuity should exist. } \\
8(G / Y)-10(B) & \text { : Continuity should exist. }
\end{array}
$$

4. Check continuity between driver seat control unit connector B152 terminal 2, 8 and ground.

$2(P)-$ Ground	: Continuity should not exist.
$8(G / Y)-$ Ground	: Continuity should not exist.

OK or NG
OK >> GO TO 2.
NG >> Repair or replace harness between driver seat control unit and automatic drive positioner control unit.

AUTOMATIC DRIVE POSITIONER

2. CHECK UART LINE SIGNAL 1

1. Turn ignition switch ON .
2. Check signal between driver seat control unit connector ground, with oscilloscope.

Connector	Terminals (Wire color)		Condition	Signal (Reference value)
	(+)	(-)		
B152	2 (P)	Ground	Seat memory switch 1 or 2 operation	 PIIA4814E

OK or NG
OK >> GO TO 3.
NG >> Check the flowing.

- When voltage signal dose not appear with a constant voltage (approx. 5V), replace driver seat control unit.
- When voltage signal dose not appear with a constant voltage (approx. OV), replace automatic drive positioner control unit.

3. check uart line signal 2

Check signal between automatic driver positioner control unit connector ground, with oscilloscope.

Connector	Terminals (Wire color)		Condition	Signal (Reference value)
	(+)	(-)		
M49	10 (B)	Ground	Seat memory switch 1 or 2 opera- tion	 PIIA4813E

OK or NG

OK >> GO TO 4.
NG >> Check the flowing.

- When voltage signal dose not appear with a constant voltage (approx. 5 V), replace automatic driver seat control unit.
- When voltage signal dose not appear with a constant voltage (approx. OV), replace driver seat control unit.

4. CHECK DRIVER SEAT CONTROL UNIT

Dose the automatic drive positioner operate, when the driver seat control unit exchanged?
Does seat memory function operate?
YES >> Replace automatic drive positioner control unit.
NG >> Replace driver seat control unit.

AUTOMATIC DRIVE POSITIONER

Check Lumbar Support Circuit

1. CHECK LUMBAR SUPPORT SWITCH

1. Turn ignition switch OFF.
2. Disconnect lumbar support switch connector.
3. Check voltage between lumbar support switch connector B158 terminal 1 and ground.

$$
1 \text { (R) - Ground: : Battery voltage }
$$

OK or NG
OK >> GO TO 2.
NG >> Repair or replace harness between fuse block (J/B) and lumbar support switch.

2. CHECK LUMBAR SUPPORT SWITCH

Lumbar support switch operate, check continuity lumbar support switch connector B158 terminal 31, 32 and 1, 16B.

Con- nector	Terminal		Lumbar support switch condition	Continuity
B158	31	1	BACKWARD	Yes
		16 B	Other than above	No
		16 B	OORWARD	Yes

OK or NG

OK >> GO TO 3.
NG >> Replace lumbar support switch.

3. check lumbar support motor harness

1. Disconnect lumbar support motor connector.
2. Check continuity between lumbar support switch connector B158 terminal 31, 32 and lumbar support motor connector B172 terminal 31, 32.

31 (W) - 31 (W) : Continuity should exist.
32 (L) - 32 (L) : Continuity should exist.
3. Check continuity between lumbar support switch connector B158 terminal 31, 32 and ground.

31 (W) - Ground
: Continuity should not exist.
32 (L) - Ground
: Continuity should not exist.

OK or NG
OK >> GO TO 4.
NG >> Repair or replace harness between lumbar support switch and lumbar support motor.

AUTOMATIC DRIVE POSITIONER

4. CHECK LUMBAR SUPPORT SWITCH GROUND CIRCUIT

Check continuity between lumbar support switch connector B158 terminal 16B and ground.

16B (B) - Ground : Continuity should exist.
OK or NG
OK
NG >> Repair or replace harness between lumbar support switch and ground.

Lumbar support switch connector

POWER SEAT

Wiring Diagram — SEAT —

*: THIS CONNECTOR IS NOT SHOWN IN "HARNESS LAYOUT", PG SECTION.

REFER TO THE FOLLOWING.
E211, B1 -SUPER MULTIPLE JUNCTION (SMJ)

*: THIS CONNECTOR IS NOT SHOWN IN "HARNESS LAYOUT", PG SECTION.

HEATED SEAT

Description

- When handling seat, be extremely careful not to scratch heating unit.
- To replace heating unit, seat trim and pad should be separated.
- Do not use any organic solvent, such as thinner, benzene, alcohol, etc. to clean trims.

Wiring Diagram — HSEAT —

*: THIS CONNECTOR IS NOT SHOWN IN "HARNESS LAYOUT", PG SECTION.
$\overline{\text { FRONT SEAT }} \quad$ PFP:87000

Removal and Installation

CAUTION:
Do not disassembly the component parts of only front passenger seat in the dotted lines shown in the figure below.

SEC. 870

FRONT SEAT

10. Seatback garnish
11. Clip (C101)
12. Bolt
13. Seat cushion frame
14. Clip (C103)
15. Seat cushion outer finisher cover
16. Seat slide and lifter switch knob
17. Seat cushion forward finisher lid
18. Nut
19. Inner cloth stay
20. Seatback frame
21. Seat harness assembly
22. Seat adjust assembly cover
23. Lumber support switch assembly
24. Seat control switch
25. Side air bag module
26. Lumber support device
27. Reclining device assembly
28. Seat adjust assembly
29. Seat cushion outer finisher
30. Seat reclining switch knob
31. Seat cushion forward finisher

REMOVAL

When removing or installing the seat trim, carefully handle it to keep dirt out and avoid damage.
CAUTION:

- Before removing the front seat, turn ignition switch OFF, disconnect both battery cables and wait at least 3 minutes.
- When checking the power seat circuit for continuity using a circuit tester, do not confuse its connector with the side air bag module connector. Such an error may cause the air bag to deploy.
- Do not drop, tilt, or bump the side air bag module installing in the seat. Always handle it with care.

1. Remove the seat cushion outer finisher cover.
2. Remove the front seat belt anchor bolt. Refer to SB-4, "Removal and Installation of Front Seat Belt" .
CAUTION:
Set the front and rear cushion lifter to the down position.
3. Remove the screw.

4. Remove the seat cushion forward finisher lid.
5. Remove the seat cushion forward finisher.
6. Remove the seat slide and lifter switch knob (1) and seat reclining switch knob (2).

FRONT SEAT

7. Remove the seat cushion outer finisher.

8. Screw
9. Clip(C101)
10. Seat cushion forward finisher
11. Seat control switch
12. Seat cushion outer finisher
13. Remove the seat control switch assembly.
14. Remove the lumber support switch assembly.
15. Remove the front and rear leg cover (LH and RH).

NOTE:

- Slide the seat backward, and disconnect the front tabs on the front leg cover. Then move the cover toward the rear of the vehicle, and pull up to remove.
- Slide the seat forward, then disengage the tabs on the front LH and RH of the rear leg cover and tabs engaged into the rail. Then pull the cover toward the rear of the vehicle.

11. Slide the seat until the body mounting bolts are visible and a tool can be inserted.

NOTE:
When disassembling the driver seat after removal, set the front and rear cushion lifter to the top position.
12. Disconnect both battery cables.
13. Remove the harness connector for the side air bag module.
14. Remove the power seat harness connector and vehicle harness fixing clip.
15. Remove the front seat.

NOTE:

When removing and installing, using waste, protect the parts from damage where it may interfere with others.

FRONT SEAT

INSTALLATION

Install in the reverse order of removal.
NOTE:
Be sure to insert the rear end tab of the rear leg cover under the rail.

REMOVAL OF SEATBACK TRIM AND PAD

1. Remove the seatback garnish.

2. Remove the retainer.

3. Remove the stay securing the inner cloth.

M
4. Remove the headrest.
5. Remove the headrest holder.

From the back of the seatback, press the headrest holder tab of the stay pipe hole to disengage. Then pull the headrest holder up to remove.
NOTE:
Before installing the headrest holder, check its orientation (front, rear, left and right).

FRONT SEAT

6. Remove the heated seat connector.

7. After removing the seatback trim and pad, remove the hog rings to separate the trim, pad, and seatback heater unit.

INSTALLATION OF SEATBACK TRIM AND PAD

Install in the reverse order of removal.

REMOVAL OF SEAT CUSHION TRIM AND PAD

CAUTION:
Do not disassemble the component parts of only front passenger seat in the dotted lines shown in the figure. Refer to SE-97.

1. Remove the seat cushion inner finisher.

2. Remove the velcro and retainer.

3. Remove the seat harness connector.
4. Remove the seatback frame.
5. Remove the reclining device assembly.

FRONT SEAT

6. Remove the retainer and clip.

7. After removing the seat cushion trim and pad, remove the hog rings to separate the trim and pad and the seat cushion heater unit.

INSTALLATION OF SEAT CUSHION TRIM AND PAD

Install in the reverse order of removal.

REAR SEAT
Removal and Installation

1. Headrest (side)
2. Seatback trim (RH)
3. Nut
4. Reclining lever (RH)
5. Bolt
6. Clip (C101)
7. Seatback pad (LH)
8. Armrest bracket cover
9. Reclining device inner cover (LH)
10. Seat hinge cover (LH)
11. Cup holder bracket
12. Headrest holder (free)
13. Seatback pad (RH)
14. Seat hinge cover (RH)
15. Reclining device outer cover (RH)
16. Seatback garnish (RH)
17. Headrest (center)
18. Seatback frame (LH)
19. Armrest bracket
20. Reclining device outer cover (LH)
21. Seat cushion trim
22. Cup holder
23. Headrest holder (locked)
24. Seatback frame (RH)
25. Screw
26. Reclining device inner cover (RH)
27. Trunk net hook
28. Seatback trim (LH)
29. Seatback garnish (LH)
30. Armrest
31. Reclining lever (LH)
32. Seat cushion pad

REMOVAL

1. Pull the lock at the front bottom of the seat cushion forward (1 for each side), and pull the seat cushion upward to release the wire from the plastic hook, then pull the seat cushion forward to remove.

2. Remove the seatback mounting nuts.

3. Remove the seatback mounting bolt and nut. Remove the remote control wire.

INSTALLATION

Install in the reverse order of removal.
NOTE:
After rear wheel house finisher assembly is remove the seatback is installed. Refer to El-45, "Removal and Installation".

REAR SEAT

REMOVAL OF SEAT CUSHION TRIM AND PAD

1. Remove the cup holder in the back of the seat cushion.

2. Removal the hog rings to separate the trim and pad.

INSTALLATION OF SEAT CUSHION TRIM AND PAD

Install in the reverse order of removal.

REMOVAL OF SEATBACK TRIM AND PAD

1. Remove the trunk net hook in the back of the seatback.

2. After removing the seatback garnish, remove the hog rings.
3. Remove the headrest.
4. Remove the headrest holder.

Squeeze and pull up headrest holder tabs to remove from seatback frame.
NOTE:
Before installing the headrest holder, check its orientation (front, rear, left and right).

5. Remove the armrest (LH only).

6. After removing the seatback trim and pad, separate the trim and pad.

INSTALLATION OF SEATBACK TRIM AND PAD

Install in the reverse order of removal.

REMOVAL OF REMOTE CONTROL LEVER

1. Remote control wire
2. Bolt
3. Remote control lever
4. Remove the rear seat. Refer to SE-105, "REMOVAL" .
5. Remove the luggage side finisher assembly. Refer to El-45, "Removal and Installation" .
6. Remove the remote control lever.
7. Remove the remote control lever mounting bolt.
8. Remove the remote control lever assembly.

INSTALLATION OF REMOTE CONTROL LEVER

Install in the reverse order of removal.

